
Section 8: Linear Programming + What Tool?
This section has two parts. The first involves getting a bit of practice with thinking about linear programming. You
have only had one lecture on it so far but this should help you get used to it.

Also, so far this quarter, every week we’ve told you what technique to use. That’s not how things work in the real
world! In the second part of this section, we’re going to practice “when you first read through a problem, how do
you decide which technique to use?” Often the answer is “try a bunch of different options and see what happens”,
but in a time-constrained setting (say your final exam, or an interview) it’s nice if your first or second choice turns
out to work.

Linear Programming

1. Diet happiness

You need to get a certain amount of nutrition: protein, calories, fat, vitamins,
but you also shouldn’t get too much of certain things. Each quantity of food you
could chose has certain amounts of each but you are also happier eating amounts
of some foods versus others. The general problem here is to figure out how to
choose a combination of amounts of food in your diet to maximize your happiness
while meeting your nutritional needs.
Suppose that someone has no dietary restrictions but has food options per 100
grams:
Bread: 7g protein, fat 2 g, calories 260, happiness 5
Cheese: 27g protein, fat 17g, calories 250, happiness 4
Meat: 30g protein, fat 9g, calories 200 , happiness 2
Lentils: 10g protein, fat 1g, calories 120, happiness 3

Daily values: At least 50g protein, 80g fat, 2000 calories. No more than 100g
fat, no more than 2300 calories.
Write this optimization problem as a linear program in standard form.

2. A more varied diet

You are given a list of foods indexed 1, . . . , n, as well as the calories ci, sugars (g)
si, and vitamin D (mcg) di in each food. You’re trying to maintain a healthy diet
by eating exactly 2000 calories per day. You also heard that the American Heart
Association recommends at most 30 grams of sugar per day. And because you
just moved to Seattle from LA this year, it’s your first winter and you need to eat
at least 15 mcg of vitamin D to avoid SAD.
Along with the nutrition information, you also know that eating each food will

1

give you happiness hi. Find a way to compute a healthy diet that makes you
happiest.

3. Technique Toolbox

3.1. Step 1: Read the problem carefully

And answer the usual quick-check questions
• Are there any technical terms in the problem? Any words that look like nor-
mal words but really are technical terms?

• What is the input type?
• What is the output type?

If you can’t answer these, there’s no way to figure out what technique to use—you
don’t even know what problem you’re solving!

3.2. Step 2: Make some example input/outputs

You might stumble upon which technique to use here; for example, if you try to
visualize an example input, and you start drawing a graph.

3.3. Some questions to ask

At this point, you should ask “is this really a graph modeling problem?” Some
signs to look for
• The problem mentions a graph or something graph-sounding (like “routes”
or “maps”).

• There are “direct connecitons” between elements that could be edges.
• When you try to visualize an input example you end up drawing a graph.

If it doesn’t feel like graph modeling, the next step to ask is probably “could I
solve this problem recursively?” Try asking all of these
• Is there a natural way to split things “in half” (or thirds, or...)?
• Could I make the problem a little bit smaller?
• What’s “one step” toward the solution?

Thesemight start leading you to either a divide and conquer (with the first bullet)
or dynamic programming solution. In all cases, be sure you can see “how the
recursion is helping”.
Finally

2

• Did an idea immediately jump to mind?
• Did you start a sentence with something like “Well, couldn’t I just...”?

Then maybe it’s time for a greedy algorithm. But really it’s time for you to gen-
erate like 3 more examples and try them against your proposed algorithm. It’s
not fun to write a bunch of code only to realize it doesn’t work! And greedy
algorithms very often fail. Do some more checks before you jump into code writ-
ing.

3.4. None of the ideas worked

Take a deep breath, it’s going to be ok.

3.4.1. Get a baseline algorithm

Figure out what “brute force” or any other baseline would be, and jot it down
quickly on paper. And when you’re scared, look to your baseline like that hang-
in-there-cat motivational poster. Worst-case, you’re going to use that one. And if
you figured out that one, you can probably find another one. Hang in there.

3.4.2. Write a few more examples

And solve them. How are you, as a person, solving them? You’re doing some
process. See if you can reflect on it and realize what it looks like. That might
inspire you toward an algorithm.

3.4.3. Ask yourself more questions

• Does this remind you of any of the problems you’ve seen before? If so, a
similar approach might work.

• Can you solve a simpler version of the problem? If there are two variables,
make one of them a constant (a small constant, like 1) and ask “now what
would I do?” Maybe you can generalize from there.

• Can you sort the input? Assume a graph is connected or topologically sorted?
What if it’s a tree? What if the array contains only positive elements? Any of
these might give you inspiration for the general case.

4. Try it yourself!

For each of these problems, get far enough that you’re able to guess what tech-
nique you might want to use, and write down a sentence or two about what in
the problem lead you toward that technique.

3

(a) There are a total of n courses you have to take, labeled from 1 to n. You are
given a list prerequisites where prerequisites[i] = (ai, bi) indicates that
you must take course bi first if you want to take ai.
Return true if you can finish all courses. Otherwise return false.

(b) You are given a list of integers coins representing coins of different denomi-
nations and an integer amount representing a total amount of money. Return
the fewest number of coins you need to make up that amount. If that amount
of money cannot be made up by any combination of coins, return -1.

(c) You are given an integer array prices where prices[i] is the price of a
given stock on the ith day. On each day, you may decide to buy and/or sell
the stock. You can hold at most one share of the stock at any time. However,
you can buy it and then immediately sell it on the same day. Find and return
the maximum profit you can achieve.

(d) You are given an array of k linked-lists, each linked-list is sorted in ascending
order. Merge all the linked-lists into one sorted linked-list and return it.

(e) Given an array of distinct integers nums and a target integer target, return
the number of possible combinations that add up to target.

(f) There are n cities. Some of them are connected, white some are not. If city
a is connected directly with city b and city b is connected directly with city c,
then city a is connected indirectly with city c. A province is a group of directly
or indirectly connected cities and no other cities outside of the group. You
are given an n×n matrix isConnected where isConnected[i][j] = 1 if the
ith city and the jth city are directly connected, and isConnected[i][j] = 0
otherwise. Return the total number of provinces.

(g) You are given an integer array nums. You are initially positioned at the array’s
first index, and each element in the array represents your maximum jump
length at that position. Return true if you can reach the last index or false
otherwise.

(h) Write an efficient algorithm that searches for a value target in an m × n
integer matrix. This matrix has the following properties

4

(i) Integers in each row are sorted in ascending order from left to right.
(ii) Integers in each column are sorted in ascending order from top to bottom.

(i) You are given an integer array height of length n. There are n vertical lines
drawn such that the two endpoints of the ith line are (i, 0) and i, height[i].
Find two lines that together with the x-axis form a container, such that the
container contains the most water. Return the maximum amount of water a
container can store.

(j) There is a group of n people labeled from 0 to n−1 where each person has a
different amount of money and a different level of quietness. You are given
an array richer where richer[i] = [ai, bi] indicates that ai has more money
than bi and an integer array quiet where quiet[i] is the quietness of the
ith person. All the given data in richer are logically correct (i.e., the data
will not lead you to a situation where x is richer than y and y is richer than
x at the same time). Return an integer array answer where answer[x] = y
if y is the least quiet person (that is, the person y with the smallest value
of quiet[y]) among all people who definitely have equal to or more money
than the person x.

(k) Given an integer array nums, return an integer array counts where counts[i]
is the number of smaller elements to the right of nums[i].

(l) You are given several boxes with different colors represented by different
positive numbers. You may experience several rounds to remove boxes until
there is not box left. Each time you can choose some continuous boxes with
the same color (i.e., composed of k boxes, k ≥ 1), remove them and get k ∗ k
points. Return the maximum points you can get.

(m) There are n rooms labeled from 0 to n−1 and all the rooms are locked except
for room 0. Your goal is to visit all the rooms. However, you cannot enter
a locked room without having its key. When you visit a room, you may find
a set of distinct keys in it. Each key has a number on it, denoting which
room it unlocks, and you can take all of them with you to unlock the other
rooms. Given an array rooms where rooms[i] is the set of keys that you can
obtain if you visit room i, return true if you can visit all the rooms, or false
otherwise.

5

(n) Given an integer n, return the least number of perfect square numbers that
sum to n. A perfect square is an integer that is the square of an integer, in
other words, it is the product of some integer with itself. For example, 1, 4,
and 9 are perfect squares while 3 and 11 are not.

(o) You are given a network of n locations labeled from 1 to n. You are also
given times, a list of travel times such that times[i] = (ui, vi, wi), where
ui is the source, vi is the destination and wi is the time it takes for a signal to
travel from the source to the destination. We will send a signal from a given
location k. Return the minimum time it takes for all n locations to receive
the signal. If it is impossible for all n locations to receive the signal, return
-1.

(p) You are given two integers n and k and two integer arrays speed and efficiency
both of length n. There are n engineers numbered from 1 to n. speed[i] and
efficiency[i] represent the speed and efficiency of the ith engineer respec-
tively. Choose at most k different engineers out of the n engineers to form
a team with the maximum performance. The performance of a team is the
sum of their engineers’ speeds multiplied by the minimum efficiency among
their engineers. Return the maximum performance of this team.

(q) There are n piles of stones arranged in a row. The ith pile has stones[i]
stones. A move consists of merging exactly k consecutive piles into one pile,
and the cost of this move is equal to the total number of stones in these k

piles. Return the minimum cost to merge all piles of stones into one pile.

(r) A series of highways connect n cities numbered from 0 to n−1. You are given
a 2D integer array highways where highways[i] = [city1i, city2i, tolli] in-
dicates that there is a highway that connects city1i and city2i, allowing a
car to go from city1i to city2i and vice versa for a cost of tolli.You are
also given an integer discounts which represents the number of discounts
you have. You can use a discount to travel across the ith highway for a cost
of tolli/2 (integer division). Each discount may only be used once, and you
can only use at most one discount per highway. Return the minimum total
cost to go from city 0 to city n− 1, or -1 if it is not possible to go from city 0
to city n− 1.

(s) A subsequence of a string is a new string that is formed from the original

6

string by deleting some (can be none) of the characters without disturbing the
relative positions of the remaining characters. (i.e., ”ace” is a subsequence of
”abcde” while ”aec” is not). Given two strings source and target, return the
minimum number of subsequences of source such that their concatenation
equals target. If the task is impossible, return -1.

5. DP on Trees

You are given a tree T = (V,E) with nonnegative edge weights. You want to
determine the diameter of the tree, which is the longest distance between any
two nodes. The goal is to design a DP which runs in O (n) where n = |V |.

5.1. Write the Dynamic Program

(a) Formulate the problem recursively – what are you looking for (in English!!),
and what parameters will you need as you’re doing the calculation? It will
be useful to fix a root node in the tree first, then every node in the tree has
a list of children nodes you can access.

(b) Write a recurrence for solving the problem you defined in the last part (the
recurrence is for the answer, not the running time).

(c) What is your final answer (e.g. what parameters for the recurrence do you
need? Is it a single value or the max/min of a set of values?)?

(d) Give a brief justification for why your recurrence is correct. You do not need
a formal inductive proof, but your intuition will likely resemble one.

5.2. Analyze the Dynamic Program

(a) Describe a memoization structure for your algorithm.

(b) Describe a filling order for your memoization structure.

(c) State and justify the running time of an iterative solution.

7

	1 Diet happiness
	2 A more varied diet
	3 Technique Toolbox
	3.1 Step 1: Read the problem carefully
	3.2 Step 2: Make some example input/outputs
	3.3 Some questions to ask
	3.4 None of the ideas worked
	3.4.1 Get a baseline algorithm
	3.4.2 Write a few more examples
	3.4.3 Ask yourself more questions

	4 Try it yourself!
	5 DP on Trees
	5.1 Write the Dynamic Program
	5.2 Analyze the Dynamic Program

