
CSE 421 Section 8

Linear Programming Practice
+ What Tool?
How to Determine Which Algo Paradigm to Try

Administrivia

Announcements & Reminders

● Midterm Exam

● HW6

○ Due yesterday Nov 15.

● HW7

○ Due on Nov 29 but no other section before then.

Linear Programming

Linear programming is the following problem:

 ��� ���

�	
��� �� �� ≤ �

In other words,

 ��� ���� + ���� + ⋯ + ����

�	
��� �� ����� + ����� + ⋯ + ����� ≤ ��

�	
��� �� ����� + ����� + ⋯ + ����� ≤ ��

�	
��� �� ����� + ����� + ⋯ + ����� ≤ ��

�	
��� �� ����� + ����� + ⋯ + ����� ≤ ��

� ≥ 0

Review of Key Concepts

Linear programming is the following problem:

 ��� ���

�	
��� �� �� ≤ �

In other words,

 ��� ���� + ���� + ⋯ + ����

�	
��� �� ����� + ����� + ⋯ + ����� ≤ ��

�	
��� �� ����� + ����� + ⋯ + ����� ≤ ��

�	
��� �� ����� + ����� + ⋯ + ����� ≤ ��

�	
��� �� ����� + ����� + ⋯ + ����� ≤ ��

� ≥ 0

Review of Key Concepts

Standard form is

maximization with less than

or equal to constraints

Non-negativity constraint

The Strategy

1. Read and understand the problem

2. Identify the constraints and the objective function

3. Transform the constraints to standard form

4. Correctness (and running time)

Problem 1 – Happy Eating

You are given a list of foods indexed 1, … , �, as well as the calories � , sugars (g) ! , and

vitamin D (mcg) " in each food. You’re trying to maintain a healthy diet by eating

exactly 2000 calories per day. You also heard that the American Heart Association

recommends at most 30 grams of sugar per day. And because you just moved to

Seattle from LA this year, it’s your first winter and you need to eat at least 15 mcg of

vitamin D to avoid SAD.

Along with the nutrition information, you also know that eating each food will give you

happiness ℎ . Find a way to compute a healthy diet that makes you happiest.

Problem 1.1 – Read the problem

Answer the usual quick-check questions:

● Are there any technical terms in the problem you don’t know? Are there any words

that look like normal words, but are actually technical terms?

● What is the input type?

● What is the output type?

Work through this problem with the people around you, and then

we’ll go over it together!

Problem 1.1 – Read the problem

Answer the usual quick-check questions:

● Are there any technical terms in the problem you don’t know? Are there any words

that look like normal words, but are actually technical terms?

● What is the input type?

● What is the output type?

Happiest: the sum of happiness values for the foods we choose is as high as possible

Problem 1.1 – Read the problem

Answer the usual quick-check questions:

● Are there any technical terms in the problem you don’t know? Are there any words

that look like normal words, but are actually technical terms?

● What is the input type?

● What is the output type?

Happiest: the sum of happiness values for the foods we choose is as high as possible

Four arrays of numbers �, !, ", ℎ each indexed 1, … , �

Problem 1.1 – Read the problem

Answer the usual quick-check questions:

● Are there any technical terms in the problem you don’t know? Are there any words

that look like normal words, but are actually technical terms?

● What is the input type?

● What is the output type?

Happiest: the sum of happiness values for the foods we choose is as high as possible

Four arrays of numbers �, !, ", ℎ each indexed 1, … , �

A quantity of food � for each food 1, … , �

Problem 1.2 – Identify constraints and objective

This sounds like a linear programming problem. From what you know so far,

what would the constraints be? What is the objective function? What parts are

not yet in standard form?

Work through this problem with the people around you, and then

we’ll go over it together!

Problem 1.2 – Identify constraints and objective

This sounds like a linear programming problem. From what you know so far,

what would the constraints be? What is the objective function? What parts are

not yet in standard form?

 ��� ℎ��� + ⋯ + ℎ���

�	
��� �� ���� + ⋯ + ���� = 2000

�	
��� �� !��� + ⋯ + !��� ≤ 30

�	
��� �� "��� + ⋯ + "��� ≥ 15
 � ≥ 0

The inequalities are not yet in standard form.

Problem 1.3 – Transform to standard form

How can you transform the equations from the previous part to be into

standard form?

Work through this problem with the people around you, and then

we’ll go over it together!

Problem 1.3 – Transform to standard form

How can you transform the equations from the previous part to be into

standard form?

 ��� ℎ��� + ⋯ + ℎ���

�	
��� ��

���� + ⋯ + ���� ≤ 2000

�	
��� − ���� − ⋯ − ���� ≤ −2000

�	
��� �� !��� + ⋯ + !��� ≤ 30

�	
��� − "��� − ⋯ − "��� ≤ −15
 � ≥ 0

Convert equalities into two inequalities and multiply ≥ inequalities by -1.

Problem 1.4 – Correctness and runtime

Explain why your algorithm is correct. For LP problems, the proof is usually just

explaining how you’ve represented each part of the problem and relying on the

correctness of the LP algorithm. (Runtime hasn’t been covered in class yet, so don’t

worry about it for today.)

Work through this problem with the people around you, and then

we’ll go over it together!

Problem 1.4 – Correctness and runtime

Explain why your algorithm is correct. For LP problems, the proof is usually just

explaining how you’ve represented each part of the problem and relying on the

correctness of the LP algorithm. (Runtime hasn’t been covered in class yet, so don’t

worry about it for today.)

If we pick � units of food), then the total happiness we get is ℎ � , so our goal is to

maximize ℎ��� + ⋯ + ℎ���. Similarly, we are given per-unit values for the amount of

calories, sugar, and vitamin D, so our constraints are ���� + ⋯ + ���� = 2000,

!��� + ⋯ + !��� ≤ 30, and "��� + ⋯ + "��� ≥ 15. We transformed them to

standard form using basic algebra. Relying on an LP algorithm, we output the best

��, … , �� as desired.

What Tool?

In the real world…

When you come across a problem you’d like to solve (perhaps on an interview or on

the final exam), you generally won’t be told what kind of algorithm to write. You

COULD just randomly start trying stuff, but that’s going to be pretty inefficient, and

you may waste a lot of time pursuing algorithmic paradigms that just won’t work for

the given problem.

Ideally, you want to be able to figure out what kind of algorithm to write in only a few

tries. So how do you figure out what technique to use?

The Strategy

1. Read the Problem Carefully

2. Generate Example Inputs/Outputs

3. Ask Some Questions

4. Still Stuck?

Step 1: Read the Problem Carefully

● Are there any technical terms in the problem? Any words that look like normal

words but really are technical terms?

● What is the input type?

● What is the output type?

If these questions look familiar, they should!

If you can’t answer these, there’s no way to figure out what technique to use—you

don’t even know what problem you’re solving!

Step 2: Generate Example Inputs/Outputs

Spend a few minutes producing some examples. This will help make sure that you

have a clear understanding of the problem. Like usual, it’s helpful to think about a few

different “typical” cases here, don’t worry too much about edge cases yet.

Plus, you might stumble upon which technique to use here; for example, if you try to

visualize an example input, and you start drawing a graph.

Step 3: Ask Some Questions

At this point, you should ask “is this really a graph modeling problem?” Some signs to

look for:

● The problem mentions a graph or something graph-sounding (like “routes” or

“maps”).

● There are “direct connections” between elements that could be edges.

● When you try to visualize an input example you end up drawing a graph.

Step 3: Ask Some Questions

If it doesn’t feel like graph modeling, the next step to ask is probably “could I solve this

problem recursively?” Try asking all of these:

● Is there a natural way to split things “in half” (or thirds, or...)?

● Could I make the problem a little bit smaller?

● What’s “one step” toward the solution?

These might start leading you to either a divide and conquer (with the first bullet) or

dynamic programming solution. In all cases, be sure you can see “how the recursion is

helping”.

Step 3: Ask Some Questions

Finally:

● Did an idea immediately jump to mind?

● Did you start a sentence with something like “Well, couldn’t I just...”?

Then maybe it’s time for a greedy algorithm. But really, it’s time for you to generate

like 3 more examples and try them against your proposed algorithm. It’s not fun to

write a bunch of code only to realize it doesn’t work! And greedy algorithms very often

fail. Do some more checks before you jump into code writing.

Step 4: Still Stuck?

So, none of the earlier steps worked…

Take a deep breath, it’s going to be ok.

Step 4.1: Get a Baseline Algorithm

Figure out what “brute force” or any other baseline would be, and jot it down quickly

on paper. And when you’re scared, look to your baseline like that hang-in-there-cat

motivational poster. Worst-case, you’re going to use that one. And if you figured out

that one, you could probably find another one.

Hang in there.

Step 4.2: Write a Few More Examples

And solve them. How are you, as a person, solving them? You’re doing some process.

See if you can reflect on it and realize what it looks like. That might inspire you toward

an algorithm.

Step 4.3: Ask Yourself Some More Questions

● Does this remind you of any of the problems you’ve seen before? If so, a similar

approach might work.

● Can you solve a simpler version of the problem? If there are two variables, make

one of them a constant (a small constant, like 1) and ask “now what would I do?”

Maybe you can generalize from there.

● Can you sort the input? Assume a graph is connected or topologically sorted? What

if it’s a tree? What if the array contains only positive elements? Any of these might

give you inspiration for the general case.

2. Try it Yourself

Problem 2 – Try it Yourself!

For each of these problems, get far enough through these steps that you’re

able to guess what technique you might want to use. Then write down a

sentence or two about what in the problem lead you toward that technique.

Work through the parts of this problem with the people around you,

and then we’ll go over it together!

Problem 2 – Try it Yourself!

a) There are a total of � courses you have to take, labeled from 1 to �. You

are given a list prerequisites where prerequisites[)] = (� , �) indicates

that you must take course � first if you want to take � . Return true if you

can finish all courses. Otherwise return false.

Problem 2 – Try it Yourself!

a) There are a total of � courses you have to take, labeled from 1 to �. You

are given a list prerequisites where prerequisites[)] = (� , �) indicates

that you must take course � first if you want to take � . Return true if you

can finish all courses. Otherwise return false.

Graph. The list prerequisites contains pairs of courses that can be

represented as edges and the course numbers can represent vertices in a

graph.

Problem 2 – Try it Yourself!

b) You are given a list of integers coins representing coins of different

denominations and an integer amount representing a total amount of

money. Return the fewest number of coins you need to make up that

amount. If that amount of money cannot be made up by any

combination of coins, return -1.

Problem 2 – Try it Yourself!

b) You are given a list of integers coins representing coins of different

denominations and an integer amount representing a total amount of

money. Return the fewest number of coins you need to make up that

amount. If that amount of money cannot be made up by any

combination of coins, return -1.

Dynamic Programming. Different combination of coins must be tested to

find the minimum number to use. By using a coin, the total amount of

money is reduced which becomes the next sub-problem.

Problem 2 – Try it Yourself!

c) You are given an integer array priceswhere prices[)] is the price of a

given stock on the)67 day. On each day, you may decide to buy and/or

sell the stock. You can hold at most one share of the stock at any time.

However, you can buy it and then immediately sell it on the same day.

Find and return the maximum profit you can achieve.

Problem 2 – Try it Yourself!

c) You are given an integer array priceswhere prices[)] is the price of a

given stock on the)67 day. On each day, you may decide to buy and/or

sell the stock. You can hold at most one share of the stock at any time.

However, you can buy it and then immediately sell it on the same day.

Find and return the maximum profit you can achieve.

Greedy/Dynamic Programming. The goal is to maximize the output, so

dynamic programming can be used to memoize the smaller sub-problems

for buying/selling on certain days. An indicator to try a greedy algorithm is

that you can only hold one share at any time, so there might be a way to

decide which share to hold and when to sell it

Problem 2 – Try it Yourself!

d) You are given an array of 8 linked-lists, where each linked-list is sorted in

ascending order. Merge all the linked-lists into one sorted linked-list and

return it.

Problem 2 – Try it Yourself!

d) You are given an array of 8 linked-lists, where each linked-list is sorted in

ascending order. Merge all the linked-lists into one sorted linked-list and

return it.

Divide and Conquer. We can split this into smaller sub-problems and we

know that each linked list is sorted which is an indicator for divide and

conquer algorithms.

Problem 2 – Try it Yourself!

e) Given an array of distinct integers nums and a target integer target,

return the number of possible combinations that add up to target.

Problem 2 – Try it Yourself!

e) Given an array of distinct integers nums and a target integer target,

return the number of possible combinations that add up to target.

Dynamic Programming. One key phrase is ”number of possible

combinations”, so there must be a way to find the number of

combinations for a sub-problem (a smaller target integer) which can be

memoized using dynamic programming.

Problem 2 – Try it Yourself!

f) There are � cities. Some of them are connected, while some are not. If city � is

connected directly with city � and city � is connected directly with city �, then

city � is connected indirectly with city �. A province is a group of directly or

indirectly connected cities and no other cities outside of the group. You are given

an � × � matrix isConnectedwhere isConnected[)][:] = 1 if the)th city

and the :th city are directly connected, and isConnected[)][:] = 0 otherwise.

Return the total number of provinces.

Problem 2 – Try it Yourself!

f) There are � cities. Some of them are connected, while some are not. If city � is

connected directly with city � and city � is connected directly with city �, then

city � is connected indirectly with city �. A province is a group of directly or

indirectly connected cities and no other cities outside of the group. You are given

an � × � matrix isConnectedwhere isConnected[)][:] = 1 if the)th city

and the :th city are directly connected, and isConnected[)][:] = 0 otherwise.

Return the total number of provinces.

Graph. Some key words here are ”n cities” and “connected

directly/indirectly” which represents a graph where cities are the vertices

and whether they are connected or not as the edges.

Problem 2 – Try it Yourself!

g) You are given an integer array nums. You are initially positioned at the

array’s first index, and each element in the array represents your

maximum jump length at that position. Return true if you can reach the

last index or false otherwise.

Problem 2 – Try it Yourself!

g) You are given an integer array nums. You are initially positioned at the

array’s first index, and each element in the array represents your

maximum jump length at that position. Return true if you can reach the

last index or false otherwise.

Greedy/Dynamic Programming. A greedy algorithm can be used to

always keep track of the furthest location you can jump to given which

locations you’ve already been and similarly, with dynamic programming,

it can be done by memoizing the furthest location for each location.

Problem 2 – Try it Yourself!

h) Write an efficient algorithm that searches for a value target in an ; × �

integer matrix. This matrix has the following properties:

i. Integers in each row are sorted in ascending order from left to right.

ii. Integers in each column are sorted in ascending order from top to bottom.

Problem 2 – Try it Yourself!

h) Write an efficient algorithm that searches for a value target in an ; × �

integer matrix. This matrix has the following properties:

i. Integers in each row are sorted in ascending order from left to right.

ii. Integers in each column are sorted in ascending order from top to bottom.

Divide and Conquer. Some keywords here are “search” and “ascending

order”, so we know each column and row are sorted which can be split

into smaller matrices that are sorted as well to find a value.

Problem 2 – Try it Yourself!

i) You are given an integer array height of length �. There are � vertical

lines drawn such that the two endpoints of the)th line are (), 0) and

(),height[)]). Find two lines that together with the �-axis form a

container, such that the container contains the most water. Return the

maximum amount of water a container can store.

Problem 2 – Try it Yourself!

i) You are given an integer array height of length �. There are � vertical

lines drawn such that the two endpoints of the)th line are (), 0) and

(),height[)]). Find two lines that together with the �-axis form a

container, such that the container contains the most water. Return the

maximum amount of water a container can store.

Greedy. The goal is to maximize the height and width, so walls that are

further away and taller should be prioritized.

Problem 2 – Try it Yourself!

j) There is a group of � people labeled from 0 to � − 1 where each person has a different

amount of money and a different level of quietness. You are given an array richer where

richer[)] = [� , �] indicates that � has more money than � and an integer array quiet

where quiet[)] is the quietness of the)th person. All the given data in richer are logically

correct (i.e., the data will not lead you to a situation where � is richer than < and < is richer

than � at the same time). Return an integer array answer where answer[�] = < if < is the

least quiet person (that is, the person < with the smallest value of quiet[<]) among all

people who definitely have equal to or more money than the person �.

Problem 2 – Try it Yourself!

j) There is a group of � people labeled from 0 to � − 1 where each person has a different

amount of money and a different level of quietness. You are given an array richer where

richer[)] = [� , �] indicates that � has more money than � and an integer array quiet

where quiet[)] is the quietness of the)th person. All the given data in richer are logically

correct (i.e., the data will not lead you to a situation where � is richer than < and < is richer

than � at the same time). Return an integer array answer where answer[�] = < if < is the

least quiet person (that is, the person < with the smallest value of quiet[<]) among all

people who definitely have equal to or more money than the person �.

Graph. There is a relationship that is described here that shows a

dependency such as showing that person � is richer than person �, so a

graph would be used to map out the correct dependencies.

Problem 2 – Try it Yourself!

k) Given an integer array nums, return an integer array countswhere

counts[)] is the number of smaller elements to the right of nums[)].

Problem 2 – Try it Yourself!

k) Given an integer array nums, return an integer array countswhere

counts[)] is the number of smaller elements to the right of nums[)].

Divide and Conquer. Since we want to find the number of smaller

elements to the right of an element in an unsorted array, there must be

some sorting that occurs, so a modified divide and conquer sorting

algorithm can be used.

Problem 2 – Try it Yourself!

l) You are given several boxes with different colors represented by different

positive numbers. You may experience several rounds to remove boxes

until there is no box left. Each time you can choose some continuous

boxes with the same color (i.e., composed of 8 boxes, 8 ≥ 1), remove

them and get 8 ∗ 8 points. Return the maximum points you can get.

Problem 2 – Try it Yourself!

l) You are given several boxes with different colors represented by different

positive numbers. You may experience several rounds to remove boxes

until there is no box left. Each time you can choose some continuous

boxes with the same color (i.e., composed of 8 boxes, 8 ≥ 1), remove

them and get 8 ∗ 8 points. Return the maximum points you can get.

Dynamic Programming. The indicator here is that we want to try out

different permutations of removing boxes to maximize the output. After

removing boxes, the problem becomes smaller, so dynamic programming

should be used to memoize the solutions to smaller sub-problems.

Problem 2 – Try it Yourself!

m) There are n rooms labeled from 0 to � − 1 and all the rooms are locked except for

room 0. Your goal is to visit all the rooms. However, you cannot enter a locked

room without having its key. When you visit a room, you may find a set of distinct

keys in it. Each key has a number on it, denoting which room it unlocks, and you

can take all of them with you to unlock the other rooms. Given an array rooms

where rooms[)] is the set of keys that you can obtain if you visit room), return

true if you can visit all the rooms, or false otherwise.

Problem 2 – Try it Yourself!

m) There are n rooms labeled from 0 to � − 1 and all the rooms are locked except for

room 0. Your goal is to visit all the rooms. However, you cannot enter a locked

room without having its key. When you visit a room, you may find a set of distinct

keys in it. Each key has a number on it, denoting which room it unlocks, and you

can take all of them with you to unlock the other rooms. Given an array rooms

where rooms[)] is the set of keys that you can obtain if you visit room), return

true if you can visit all the rooms, or false otherwise.

Graph. There is a dependency on being able to visit a room since you must

have found a key in the previous room to unlock it and the goal is to visit

all rooms. Because of this, the problem can be represented as a graph with

the goal as traversing through all nodes of the graph.

Problem 2 – Try it Yourself!

n) Given an integer �, return the least number of perfect square numbers

that sum to �. A perfect square is an integer that is the square of an

integer, in other words, it is the product of some integer with itself. For

example, 1, 4, and 9 are perfect squares while 3 and 11 are not.

Problem 2 – Try it Yourself!

n) Given an integer �, return the least number of perfect square numbers

that sum to �. A perfect square is an integer that is the square of an

integer, in other words, it is the product of some integer with itself. For

example, 1, 4, and 9 are perfect squares while 3 and 11 are not.

Dynamic programming. If a perfect square ! is chosen to be part of the

solution, then finding the least number of perfect square numbers that

create � − ! is another sub-problem that should be memoized.

Problem 2 – Try it Yourself!

o) You are given a network of � locations labeled from 1 to �. You are also given

times, a list of travel times such that times[)] = (> , ? , @), where > is the

source, ? is the destination and @ is the time it takes for a signal to travel from

the source to the destination. We will send a signal from a given location 8.

Return the minimum time it takes for all � locations to receive the signal. If it is

impossible for all � locations to receive the signal, return −1.

Problem 2 – Try it Yourself!

o) You are given a network of � locations labeled from 1 to �. You are also given

times, a list of travel times such that times[)] = (> , ? , @), where > is the

source, ? is the destination and @ is the time it takes for a signal to travel from

the source to the destination. We will send a signal from a given location 8.

Return the minimum time it takes for all � locations to receive the signal. If it is

impossible for all � locations to receive the signal, return −1.

Graph. The key takeaway here is that the list times is a list of weighted

edges since for every element, it provides the source, destination and the

weight. Another element in this question is that it wants to find the

minimum time it takes for all n locations to receive a signal which alludes

to some sort of graph traversal.

Problem 2 – Try it Yourself!

p) You are given two integers � and 8 and two integer arrays speed and

efficiency both of length �. There are � engineers numbered from 1 to �.

speed[)] and efficiency[)] represent the speed and efficiency of the)th

engineer respectively. Choose at most 8 different engineers out of the �

engineers to form a team with the maximum performance. The performance of a

team is the sum of their engineers’ speeds multiplied by the minimum efficiency

among their engineers. Return the maximum performance of this team.

Problem 2 – Try it Yourself!

p) You are given two integers � and 8 and two integer arrays speed and

efficiency both of length �. There are � engineers numbered from 1 to �.

speed[)] and efficiency[)] represent the speed and efficiency of the)th

engineer respectively. Choose at most 8 different engineers out of the �

engineers to form a team with the maximum performance. The performance of a

team is the sum of their engineers’ speeds multiplied by the minimum efficiency

among their engineers. Return the maximum performance of this team.

Greedy: Less trivial greedy idea: for each candidate, we treat him/her as

the one who has the minimum efficiency in a team. Then, we select the

rest of the team members based on this condition.

Problem 2 – Try it Yourself!

q) There are � piles of stones arranged in a row. The)th pile has stones[)] stones.

A move consists of merging exactly 8 consecutive piles into one pile, and the cost

of this move is equal to the total number of stones in these 8 piles. Return the

minimum cost to merge all piles of stones into one pile.

Problem 2 – Try it Yourself!

q) There are � piles of stones arranged in a row. The)th pile has stones[)] stones.

A move consists of merging exactly 8 consecutive piles into one pile, and the cost

of this move is equal to the total number of stones in these 8 piles. Return the

minimum cost to merge all piles of stones into one pile.

Dynamic programming. Since different merging orders could lead to the

same subproblem, using a memo structure could reduce the amount of

calculation needed.

Problem 2 – Try it Yourself!

r) A series of highways connect � cities numbered from 0 to � − 1. You are given a

2D integer array highways where highways[)] = [city1) , city2) , toll)]

indicates that there is a highway that connects city1) and city2), allowing a

car to go from city1) to city2) and vice versa for a cost of toll).You are also

given an integer discounts which represents the number of discounts you have.

You can use a discount to travel across the)th highway for a cost of toll) /2

(integer division). Each discount may only be used once, and you can only use at

most one discount per highway. Return the minimum total cost to go from city 0

to city � − 1, or -1 if it is not possible to go from city 0 to city � − 1.

Problem 2 – Try it Yourself!

r) A series of highways connect � cities numbered from 0 to � − 1. You are given a

2D integer array highways where highways[)] = [city1) , city2) , toll)]

indicates that there is a highway that connects city1) and city2), allowing a

car to go from city1) to city2) and vice versa for a cost of toll).You are also

given an integer discounts which represents the number of discounts you have.

You can use a discount to travel across the)th highway for a cost of toll) /2

(integer division). Each discount may only be used once, and you can only use at

most one discount per highway. Return the minimum total cost to go from city 0

to city � − 1, or -1 if it is not possible to go from city 0 to city � − 1.

Graph: Cities are the nodes and highways are undirected edges.

Problem 2 – Try it Yourself!

s) A subsequence of a string is a new string that is formed from the original string by

deleting some (can be none) of the characters without disturbing the relative

positions of the remaining characters. (i.e., ”ace” is a subsequence of ”abcde”

while ”aec” is not). Given two strings source and target, return the minimum

number of subsequences of source such that their concatenation equals target. If

the task is impossible, return -1.

Problem 2 – Try it Yourself!

s) A subsequence of a string is a new string that is formed from the original string by

deleting some (can be none) of the characters without disturbing the relative

positions of the remaining characters. (i.e., ”ace” is a subsequence of ”abcde”

while ”aec” is not). Given two strings source and target, return the minimum

number of subsequences of source such that their concatenation equals target. If

the task is impossible, return -1.

Greedy: we greedily concatenate source and check if we have target as a

subsequence of the concatenated string or not.

That’s All, Folks!

Thanks for coming to section this week!

Any questions?

