
CSE 421 Section 5

Dynamic Programming

Administrivia

Announcements & Reminders

● HW3

○ If you think something was graded incorrectly, submit a regrade request!

● HW4

○ Due yesterday, 10/26

● HW5

○ Due Wednesday 8/1 @ 11:59pm

● Midterm Exam: Wednesday November 8 in CSE2 G20 @ 6-7:30 pm

● Make sure you have it saved on your calendar!

● If you can’t make it, let us know and we will schedule a conflict exam!

Writing a Dynamic Programming Algo

Dynamic Programming

● Take recursive ideas from divide and conquer, but speed up finding the solution by

optimizing the work by reordering and saving the results so we don’t have to

repeat anything!

● Key idea:

○ use English words to explain the output of the recursive function

○ write a recurrence for the output of the recursive function

● Memoization: save results of intermediate calculations so we don’t need to repeat

Dynamic Programming

● Recursion: Use a recursive solution, but speed up finding the solution by

optimizing the work by reordering and saving the results so we don’t have to

repeat anything!

● Key idea:
○ use English words to explain the output of the recursive function

○ write a recurrence for the output of the recursive function

● Parameters: Figure out all the parameters of the subproblems so we can store

their answers in a nice structure without repeating

● Order: Order the subproblems so they are already finished when we need them.

The general strategy we’ve been using…

1. Read and Understand the Problem

2. Generate Examples

3. Produce a Baseline

4. Brainstorm and Analyze Possible Algorithms

5. Write an Algorithm

6. Show Your Algorithm is Correct

7. Optimize and Analyze the Run Time

The DP Strategy for Steps 4-7

4. Suppose brainstorming has led you to try Dynamic Programming...

5. Dynamic Programming:
i. Recurse: Design a recursive solution for the problem

• How are the subproblems for that solution defined?

6. Correctness: Show that your recursive solution is correct.

ii. Parameters: Determine the possible values of parameters in those

subproblems and how to store them

iii. Order: Design an iterative solution that computes them in the right

order.

7. Optimize and Analyze the Run Time

Problem 1 – Lots of fun, with a normal sleep schedule

You are planning your social calendar for the month. For each day, you can choose to

go to a social event or stay in and catch-up on sleep. If you go to a social event, you

will enjoy yourself. But you can only go out for two consecutive days – if you go to a

social event three days in a row, you’ll fall too far behind on sleep and miss class.

Luckily, you have an excellent social sense, so you know exactly how much you will

enjoy any of the social events, and have assigned each day an (integer) numerical

happiness score (and you know you get 0 enjoyment from staying in and catching up

on sleep). You have an array �[] which gives the happiness you would get by going out

each day. Your goal is to maximize the sum of the happinesses for the days you do go

out, while not going out for more than two consecutive days.

1. Read and Understand the Problem

Problem 1.1 – Fun & Sleep

● Are there any technical terms, or words that seem technical?

● What is the input type? (Array? Graph? Integer? Something else?)

● What is your return type? (Integer? List?)

Spend a couple of minutes to figure these out

Problem 1.1 – Fun & Sleep

● Are there any technical terms, or words that seem technical?

● What is the input type? (Array? Graph? Integer? Something else?)

● What is your return type? (Integer? List?)

2. Generate Examples

Good Examples Help!

● You should generate two or three sample instances and the correct associated

outputs.

● It’s a good idea to have some “abnormal” examples – consecutive negative

numbers, very large negative numbers, only positive numbers, etc.

● Note: You should not think of these examples as debugging examples – null or the empty list is not

a good example for this step. You can worry about edge cases at the end, once you have the main

algorithm idea. You should be focused on the “typical” (not edge) case.

Problem 1.2 – Fun & Sleep

Generate two examples with their associated outputs. Put some effort into these! The more

different from each other they are, the more likely you are to catch mistakes later.

Work through generating some examples, and then we’ll go over it together!

Problem 1.2 – Fun & Sleep

Generate two examples with their associated outputs. Put some effort into these! The more

different from each other they are, the more likely you are to catch mistakes later.

3. Write the Dynamic Program

Problem 1.3 – Fun & Sleep

a) Formulate the problem recursively – what are you looking for (in English!!), and what

parameters will you need as you’re doing the calculation?

b) Write a recurrence for solving the problem you defined in the last part (the recurrence is

for the answer, not the running time).

c) What is your final answer (e.g. what parameters for the recurrence do you need? Is it a

single value or the max/min of a set of values?)?

d) Give a brief justification for why your recurrence is correct. You do not need a formal

inductive proof, but your intuition will likely resemble one.

Start brainstorming some answers to these questions.

Problem 1.3 – Fun & Sleep

a) Formulate the problem recursively – what are you looking for (in English!!), and what

parameters will you need as you’re doing the calculation?

b) Write a recurrence for solving the problem you defined in the last part (the recurrence is

for the answer, not the running time).

First, let’s take some time to brainstorm about what the recurrence could be.

What is our OPT finding? How many parameters do we need to calculate it?

What are those parameters for?

Problem 1.3 – Fun & Sleep

a) Formulate the problem recursively – what are you looking for (in English!!), and what

parameters will you need as you’re doing the calculation?

Problem 1.3 – Fun & Sleep

b) Write a recurrence for solving the problem you defined in the last part (the recurrence is

for the answer, not the running time).

Problem 1.3 – Fun & Sleep

c) What is your final answer (e.g. what parameters for the recurrence do you need? Is it a

single value or the max/min of a set of values?)?

Problem 1.3 – Fun & Sleep

d) Give a brief justification for why your recurrence is correct. You do not need a formal

inductive proof, but your intuition will likely resemble one.

4. Analyze the Dynamic Program

Problem 1.4 – Fun & Sleep

a) Describe the parameters for all the subproblems and how you will store them.

b) Describe the order for evaluating your subproblems.

c) Write the pseudocode for your iterative algorithm

d) State and justify the running time of an iterative solution.

Start brainstorming some answers to these questions.

Problem 1.4 – Fun & Sleep

a) Describe the parameters for all the subproblems and how you will store them.

b) Describe the order for evaluating your subproblems.

c) Write the pseudocode for your iterative algorithm

d) State and justify the running time of an iterative solution.

That’s All, Folks!

Thanks for coming to section this week!

Any questions?

