Section 2: Solutions

1. Big-O-No

Put these functions in increasing order. That is, if f comes before g in the list, it must be the case that f(n) is
O (g(n)). Additionally, if there are any pairs such that f(n) is ©(g(n)), mark those pairs.
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Hint: A useful trick in these problems is to know that since log(-) is an increasing function, if f(n) is O(g(n)),
then log(f(n)) is O(log(g(n)). But be careful! Since log(-) makes functions much smaller it can obscure differences
between functions. For example, even though n? is less than n*, log(n?) and log(n*) are big-© of each other.

Solution:

(@) log(log(n))

(b) log(n)

(©) log(n?) This function is © (log(n)). They differ only by the constant factor 2.
(d) (log(n))?

@© vn

() 2l°g(") Note that this is just n.

(g) 2v"

(h) 3v™

(i) 2nlogn

2. Write it Slicker: A Proof by Contradiction

Claim: For every directed graph G, if every node of G has out-degree at least 1, then G has a directed cycle.

(@) Prove the claim using proof by contradiction. Solution:

An unclear proof. Suppose, for the sake of contradiction, there is a directed graph G such that every node
of G has out-degree at least 1, but G has no directed cycle.

We construct long and longer simple paths in G: Start at some node vy of G. Its out-degree is at least 1,
so we can move from vy along an out-edge. If this leads to vy that would be a directed cycle of length 1,
a contradiction! Therefore we have a new node v, which (like every other node) has out-degree at least
1, so there is an out-edge pointing to vy. If vy is a vertex we have already visited (i.e., vg or v1), then we




have found a directed cycle, a contradiction! Otherwise, from v,, we may repeat the same argument and
continue finding vs, vy, . . .. Since the graph is finite, so we cannot continue this process forever. Eventually
we find a repeated vertex, which means we have a directed cycle, a contradiction! O

(b) Rewrite the proof, using the proof by contradiction with extremality technique.

Solution:

Proof. Suppose, for the sake of contradiction, that there is a directed graph G such that every node of G

has out-degree at least 1, but G has no directed cycle. Let P = v, v1, ..., v, be a longest simple directed
path in G.

Since vy, has out-degree at-least 1, it must have an out-edge to a vertex W.

Since P is a longest simple directed path, w must be a repeat of a vertex among vg, vy, . .., v (otherwise
Vg, V1, - - ., Uk, w would be a longer simple directed path). Let v; be the vertex = w..

But then adding the edge (v, v;) to the part of P from v, to vy, gives a directed cycle in G:
Vjyovvy Uk, Uj.

But that contradicts the assumption that G has no directed cycle! O

(c) There’s another style yellow-flag in the version of this proof from part (a). We're proving an implication and
our contradiction was the negation of one of the two things we supposed at the start. That usually means that
proof by contrapositive would be clearer. Try writing this proof by contrapositive. Solution:

Proof. We argue by contrapositive. That is, we will show for all graphs, G, that if G does not have a directed
cycle, then it has a node of out-degree 0.

Let G be an arbitrary directed acyclic graph, and consider a maximal path vy, vy, ..., v;. Since the graph is
acyclic, there cannot be an edge from v, to any vertex in vg,v1,...v,. Since the path is maximal, v, also
can’t point to anything else so it must have out-degree 0. O

3. Mechanical: BFS and DFS

Consider the graph below.

(a) Run Breadth-First-Search on the graph below and number the layer for each node. Start with layer 0.

Solution:



Layer O: a
Layer 1: b, ¢, d
Layer2: e, f, g

(b) Run Depth-First-Search on the graph below to classify the edges. Mark the start and end times for each vertex.

Solution:

10,11

Tree Edges: (a,b), (a,0), (c,d), (d,8), (c,e), (f,g)
Back Edge: (g,c)

Forward Edges: (a,d), (c,f)

Cross Edges: (f,g)

4. Graph Modeling

In this problem we’re going to solve a classic riddle.
(a) First, you should solve the classic riddle yourself to get a feel for the problem.

You are on the beach with a jug that holds exactly 5 gallons, a jug that holds exactly 3 gallons, and a
large bucket. Your goal is to put exactly 4 gallons of water into the bucket. Unfortunately, the jugs
don’t have markings to tell how full they are (e.g., you can’t just fill the larger jug 4/5 full). What
you can do are the following operations.

* Completely fill any of your jugs.

* Pour from one of your containers into another until the first container is empty or the second is
full.

* Pour out all the remaining water in a container.

How do you get 4 gallons of water into the bucket?



Solution:

Fill the 5 gallon jug, pour into the 3 gallon jug until it is full (the jugs now contain 2 and 3 gallons respec-
tively). Pour from the larger jug into the large bucket (it now has 2 gallons). Empty the 3 gallon jug, and
repeat all these steps to get the desired 4 gallons.

Alternatively, Fill the 3 gallon jug, pour into the 5 gallon jug. Fill the 3 gallon jug again, pour until the
5 gallon jug is full (they now contain 5 gallons and 1 gallon respectively) . Pour the 1 gallon from the 3
gallon jug into the bucket. Refill the 3 gallon jug and pour into the bucket to bring the total to 4 gallons.

There may be other solutions.

(b) Now, let’s write an algorithm to solve any instance of this puzzle. You are given a list of 10 jugs with (positive
integer) capacities ¢y, ..., ¢10, ranging from 1 to C. Your goal is to determine whether it is possible to get exactly
t gallons into a bucket with capacity that is at least ¢ and at most B.

Hint: Think about how you can relate the possible ”states” of the puzzle to the nodes of some graph. What
would be a good way to define edges for this graph? How could you think of solutions to the puzzle in terms
of the graph?

Solution:

Intuition
The “state” of the puzzle can be represented as the number of gallons in each of the jugs and the bucket.
We encode the rules of the puzzle such that each possible step is an edge.

Algorithm

Let S be the set of all 11-tuples, where for the first 10 entries, the entry is an integer between 0 and ¢;, and
the final entry is an integer between 0 and 10C (upper bound on the total capacity of all jugs). There are
(C+1)'0- (B + 1) such states.

We make a graph with a vertex for every element of S. And add an edge from u to v if and only if the
states meet one of these conditions.

From a given state (j1, jo, ..., j11), you can move to another state (ji, j4, .., ji9, j11) if and only if one of the
following hold:

* There is only one index, k, where the tuples differ, and j;, = 0. (we emptied a jug or the bucket)
* There is only one index, k, (k < 10) where the tuples differ, and j;, = c;. (we filled a jug)
* There are two indices, k, £ where the tuples differ:
- Jjp=0o0rj,=c¢
= Jk + Jeu = Jj, + Jo-
Finally, we add a target vertex z, to the graph. Add an edge from every tuple where j;; =t to z.

We then use [B/D]FS, starting from the all 0’s tuple, and searching to see if z is reachable. If it is, we can
return true (and predecessor edges will show the steps to take). If z is not reachable, then return false.

Correctness

Suppose our algorithm returns true. Then [B/D]FS found a walk from all 0’s to z. By construction of the
graph, each edge corresponds to a valid rule we can apply in the original puzzle. Since the only edges
going into ¢ are from states where j;; = ¢, the walk must reach such a state, thus the puzzle can be solved
by doing the steps on the edges of that walk.

Conversely, suppose the puzzle is solvable. Then there is a series of steps that can be taken to put ¢ gallons
into the bucket. Each legal step has a corresponding edge in the graph to the next state by construction, so
there is a path to a valid stopping state (i.e., a tuple where r = t), we added an edge from all such vertices
to z, so there is a path from all 0’s to z. [B/D]FS will discover this path, so we will return true.




Running Time

Let n = (C + 1)!°(B + 1) + 1. Note that this is the number of vertices in our graph. Each vertex has
a constant number of edges leaving it (as you are performing one of three operations (dump, pour, fill)
among a constant number of jugs. So the graph can be has O (n) edges and can be constructed in O(n)
time. Running [B/D]FS in a graph with O (n) vertices and edges takes O (n) time, so the overall running
time is O (n).

5. Judging Books by Their Covers

You have a large collection of books, and just got a new bookshelf. For aesthetic reasons, you're going to arrange
your books by the color of their covers (not by author or subject). You wish to put only books of a single color on
any given shelf. You have a list of pairs of books which you know to be the same color. This list might be only partial
(it’s possible that u, v, and w are all the same color, but your list might only have “u and v are the same color. w and
v are the same color.”, for example). You should assume that the “same color” relation is transitive.

Given your list, your job is to give an upper-bound on the number of shelves you need so that no shelf has more than
one color of book. Describe an algorithm to give the best bound you can on the number of shelves needed.

You do not need a full proof of correctness, but you should describe the running time in terms of (whichever subset
is appropriate): b, the number of books; p the number of pairs listed; s the number of shelves required (i.e., your
final answer). Solution:

We’ll make a graph as follows: have a vertex for every book and an edge between u and v if they are listed as
a “same color” pair. Since “same color” is transitive, if there is a walk from « to v then v and v are the same
color. Thus any subset of a connected component can be on its own shelf (and we can’t put books from separate
connected components on the same shelf).

Our algorithm can run [B/D]FS to find connected components, and then iterate through the vertices to count
the number. The graph will have b vertices and p edges, so the running time is O (b + p).
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