
Section 1: Solutions

Review of Graph Concepts

• Degree: The number of edges connected to a vertex.

• Acyclic Graph: A graph without cycles.

• Tree: An undirected, acyclic graph.

• Path: A list of vertices v0, v1, ..., vk in a graph such that (vi, vi+1) is an edge in the graph for all 0 ≤ i < k.

1. Gale-Shapley

Consider the following stable matching instance:

p1 : r3, r1, r2, r4
p2 : r2, r1, r4, r3
p3 : r2, r3, r1, r4
p4 : r3, r4, r1, r2

r1 : p4, p1, p3, p2
r2 : p1, p3, p2, p4
r3 : p1, p3, p4, p2
r4 : p3, p1, p2, p4

(a) Run the Gale-Shapley Algorithm with pi proposing on the instance above. When choosing which free pi to
propose next, always choose the one with the smallest index (e.g., if p1 and p2 are both free, always choose
p1).

Solution:

The steps of the Gale-Shapley Algorithm with the pi with lowest index proposing first:

p1 chooses r3 (p1, r3)

p2 chooses r2 (p1, r3), (p2, r2)

p3 chooses r2 (p1, r3), (p3, r2)

p2 chooses r1 (p1, r3), (p2, r1), (p3, r2)

p4 chooses r3 (p1, r3), (p2, r1), (p3, r2)

p4 chooses r4 (p1, r3), (p2, r1), (p3, r2), (p4, r4)

(b) Run the Gale-Shapley Algorithm with pi proposing on the same instance. But now, when choosing which free
pi to propose next, always choose the one with the largest index. Do you get the same result?

Solution:

1



The steps of the Gale-Shapley Algorithm with the pi with highest index proposing first:

p4 chooses r3 (p4, r3)

p3 chooses r2 (p3, r2), (p4, r3)

p2 chooses r2 (p3, r2), (p4, r3)

p2 chooses r1 (p2, r1), (p3, r2), (p4, r3)

p1 chooses r3 (p1, r3), (p2, r1), (p3, r2)

p4 chooses r4 (p1, r3), (p2, r1), (p3, r2), (p4, r4)

We ended up with the same result!

(c) Now run the algorithm with ri proposing, breaking ties by taking the free ri with the smallest index. Do you
get the same result?

Solution:

The steps of the Gale-Shapley Algorithm with ri proposing:

r1 chooses p4 (p4, r1)

r2 chooses p1 (p1, r2), (p4, r1)

r3 chooses p1 (p1, r3), (p4, r1)

r2 chooses p3 (p1, r3), (p3, r2), (p4, r1)

r4 chooses p3 (p1, r3), (p3, r2), (p4, r1)

r4 chooses p1 (p1, r3), (p3, r2), (p4, r1)

r4 chooses p2 (p1, r3), (p2, r4), (p3, r2), (p4, r1)

No, the result is different when we have the ri propose as opposed to the pi.

2. A Quick Proof

Is it possible to have a stable matching instance with more than 2 stable matchings? If so, give an instance and at
least 3 stable matchings. If not, prove that every instance has at most 2 stable matchings.

Solution:

Consider the following instance:

p1 : r1, r2, r3, r4
p2 : r2, r1, r4, r3
p3 : r3, r4, r1, r2
p4 : r4, r3, r2, r1

r1 : p2, p1, p4, p3
r2 : p1, p2, p3, p4
r3 : p4, p3, p2, p1
r4 : p3, p4, p1, p2

This instance has four stable matchings:
(p1, r1), (p2, r2), (p3, r3), (p4, r4)
(p1, r1), (p2, r2), (p3, r4), (p4, r3)
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(p1, r2), (p2, r1), (p3, r3), (p4, r4)
(p1, r2), (p2, r1), (p3, r4), (p4, r3)

3. Induction Review

Consider the following claim: Every tree with at least 2 nodes has at least 2 nodes of degree 1.

You may use the following fact without proof: Every tree has at least one node of degree 1.

(a) What is the inductive hypothesis and the correct “skeleton” of the inductive step (i.e., the right things to assume
and the right target)? Solution:

For the inductive hypothesis, let P (n) be “Every tree with exactly n nodes has at least 2 nodes of degree
1.”

The inductive step should start with “Let T ′ be an arbitrary tree with k + 1 nodes.”

Our conclusion will be that T ′ has at least two nodes of degree 1, so P (k + 1) holds.

(b) Prove the claim by induction.
Solution:

(Note: By mistake, this problem has a more difficult induction proof than we anticipated. There are easier
non-induction proofs for the claim, check Ed for some hints.)

Let P (n) be “Every tree with exactly n nodes has at least 2 nodes of degree 1.” We prove the claim by
induction on n.

Base Case: n = 2. There is only one undirected tree with two nodes. It has 2 nodes of degree 1.

Inductive Hypothesis: Suppose P (n) holds for n = 2, ..., k for an arbitrary k ≥ 2.

Inductive Step: Let T ′ be an arbitrary tree with k + 1 nodes.

Now, let u be a vertex of T ′ of degree 1 (this vertex exists by the above fact). Let T ′′ be the graph created
by deleting u from T ′. To show that T ′′ is a tree, we must show that it is connected and acyclic. It is acyclic
because deleting edges cannot create cycles. To show that it is connected, recall that a graph is connected
if there is a path between any two vertices. The internal nodes of paths all have degree 2, so u cannot be an
internal node in any path. Therefore, between any two vertices in T ′′, the original path in T ′ connecting
them remains intact, so T ′′ is connected.

Because T ′′ is a tree, we may apply the inductive hypothesis to get 2 nodes of degree 1 in T ′′. Say they are
a and b. When we reattach u to get back T ′, this changes the degree of at most one of a and b. Hence, u
and at least 1 of a and b are the desired 2 nodes of degree 1, proving P (k + 1).

4. Find the Bug: Failed Induction

In this problem you will fix an incorrect induction proof.

Let’s do a little bit of problem setup. Suppose you have a stable matching instance with n people in P and n people
in R. Of the n members of R, 5 are popular. That is, every person in P has those 5 members of R as their first 5
choices (in some order, not necessarily the same for each person in P ). Similarly, you have 5 popular members of
P , such that every person in R has those 5 as their top choices.

Let P (n) be “In every stable matching instance with 2n in two groups of n people of which 5members of each group
are popular: in every stable matching, popular people in each group are matched to each other.”

Spoof. We will show P (n) holds for all n ≥ 5 by induction on n.
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Base Case (n = 5)
With both sets having size 5, every person is popular. Since every stable matching pairs every agent, every agent is
matched to a popular agent.

Inductive Hypothesis: Suppose P (n) holds for n = 5, ..., k for an arbitrary integer k ≥ 5.

Inductive Step: Let r1, ..., rk, p1, ..., pk be k people in each group, with r1, ..., r5, p1, ..., p5 being the popular agents.
We add agents rk+1 and pk+1. By popularity, rk+1 has p1, ..., p5 (in some order) as its 5 favorite agents and pk+1 has
r1, ..., r5 (in some order) as their 5 favorite agents. Further, let pk+1 and rk+1 be each other’s 6th choices (i.e. top
choice outside the popular riders.

Now, consider any stable matching in the old (size-k) instance, and create a stable matching for the new instance
by pairing rk+1 with pk+1.

We now show that this matching is stable for the new instance. Since it was stable for the small instance, the only
possible unstable pairs must involve rk+1 or pk+1. By IH, every popular agent is matched to another popular agent.
Regardless of where rk+1 and pk+1 was added to the popular agent’s list, they fall after the popular agents, so rk+1

and pk+1 cannot form an unstable pair with the popular agents. And since they have each other as their next choices,
they cannot form an unstable pair with anyone else. Thus we have that there are no unstable pairs, and the matching
is stable. The popular agents remain matched to each other, as required.

(a) There are at least two errors in this proof. Describe them! Solution:

The first mistake is in the setup of the inductive step. We need to show a claim for every instance of size
k+1. Instead we build a particular instance of size k+1. In this example, the mistake is quite fundamental
– there is no reason in the problem that pk+1 and rk+1 should have each other as their 6th choices. That is, if
we introduced a recursive definition of stable matching instances and changed this to structural induction,
we would have more steps to do beyond the one here (In contrast to the tree problem where all the cases
are actually handled).

The second bug is again a mistake with handling a for-all. This time, the quantifier on the “every stable
matching” part of the statement. We don’t check every stable matching! We check every matching we built
by starting with a stable matching on the small instance – how do we know there aren’t stable matchings
where pk+1 is matched to r4 (for example)? We need to start with an arbitrary stable matching and argue
whether the popular agents are matched or not.

(b) Write a correct proof of this claim. Do NOT use induction. Use a proof by contradiction instead. Solution:

Suppose, for the sake of contradiction, that there is a stable matching instance with 5 popular members
of each group, and there is a stable matching M for this instance so that some popular person p from the
first group is not matched to any popular member of the second group. Since there are the same number
of popular people in the two groups, there is a popular member r of the second group that is also not
matched to a popular agent. We claim that p and r form an unstable pair. Indeed, since each is popular,
they are each in the top 5 of each other’s lists, but each is matched to a non-popular agent, which must be
6th or lower on both lists. Thus p and r would rather be with each other than with their matches, so they
form an unstable pair. But M was supposed to be a stable matching. A contradiction! So every popular
person in the first group must be matched to a popular person in the second group.
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5. Proof Practice: Proving Code Correct

Recall Breadth-First Search from 332.

1. BFS(Graph G, Vertex start)
2. initialize queue q to hold start
3. mark start
4. while(q is not empty) {
5. u = q.dequeue()
6. for each node v adjacent to u
7. if(v is not marked)
8. mark v and q.queue(v)
9. }

We often prove properties of algorithms, e.g only good things happen, by induction on the number of steps. The
inductive statement P (n) is basically that only good things happen in the first n steps. The inductive step then
requires showing that good things will happen in the next step.

Often this step can be done by contradiction. Namely, one assumes that something bad happens in the next step
and derives a contradiction. When we write this proof out, we can save space by writing this directly as a proof
by contradiction, where we suppose that the statement is false and we consider the first step where something bad
happened. We have exactly the same properties we used for the inductive step and the base case: Only good things
happened in prior steps!

(The fact that this new way of writing things is equivalent to induction is based on the “well-ordering principle”
of the natural numbers – Every non-empty set of natural numbers has a smallest element – which is equivalent to
induction.)

Consider the following claim:

For all n ≥ 1, for the first n times that a vertex v is inserted into q, there is a path from start to v. (This isn’t full
correctness for Breadth-First Search which also would require that all vertices with a path from start are eventually
found.)

(a) Prove the claim by induction. Solution:

We prove the claim by induction on n.

Base Case: n = 1: The first vertex added to q is start .

IH: Suppose for the first k times that a vertex is added to q, at the top of the while loop, the vertex removed
from MPQ had the correct distance.

IS: Now consider the (k+1)st vertex added to q. This only can happen in line 8. Let v be the name of that
vertex. By the condition on line 6, v is adjacent to some vertex u that was added to q in one of the first k
steps. By the inductive hypothesis, there is some path P from start to u. Since v is adjacent to u we can
add the edge (u,v) to P to get a path from start to u.

Therefore by the principle of induction, every vertex inserted into q is reachable from start.

(b) Prove the claim by contradiction. Hint: Consider the first insertion of a vertex where the statement is false.
Solution:

We prove this by contradiction:
Suppose that not all vertices added to q are reachable from start. Consider the first time that a vertex that
is not reachable from start is inserted into q . It cannot be the vertex start, since that is reachable from
itself. Therefore it must be a vertex v inserted in line 8. By the condition on line 6, v is adjacent to some
vertex u that was previously added to q. Since v was the first vertex that is not reachable from start, there
is a path from start to u. Combining this with the edge from u to v to the path shows that v is reachable,
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too, contradicting our assumption.

6. Practice A Reduction

Suppose that is a set of r riders and h horses with many more riders than horses; in particular, 2h < r < 3h. You
wish to set up a set of 3 rounds of rides which will give each rider exactly one chance to ride a horse. To keep things
fair among the horses, you wish for each to have exactly 2 or 3 rides.

Because it’s winter, by the time the third ride starts it will be very dark, so every rider would prefer any horse on
the first two rides over being on the third ride. Between the first two rides, each rider doesn’t have a preference
over time of day, and have the same preference over horses. If a rider must be on the third ride, it has the same
preference list for that ride as well.

Each horse has a single list over riders, which doesn’t change by ride. Since horses love their jobs, they prefer to
being one of the horses on the third ride to one of the ones left home.

Design an algorithm which calls the following library exactly once and ensures there are no pairs r, h which would
both prefer to change the matching and get a better result for themselves.

BasicStableMatching
Input: A set of 2k agents in two groups of k agents each. Each agent has an ordered preference list of all k
members of the other group,.
Output: A stable matching among the 2k agents.

(a) Give a 1-2 sentence summary of your idea.

(b) Give the algorithm you’re going to run.

(c) Give a 1-2 sentence summary of the idea of your proof.

(d) Write a proof of correctness.

(e) Give the running time of your algorithm; briefly justify (1-3 sentences)

Solution:

We will create a Basic instance with 3h agents representing horses and 3h agents representing riders.

For each horse hi in the original instance, create three agents h(1)
i , h

(2)
i , h

(3)
i with copies of hi’s preference

list among the riders. Each starts with hi’s original list (we will need to add some more preferences to fill
that list out to length 3h as we see below).

For each rider rj , create a list as follows: from rj ’s original list, put h(1)
i followed by h

(2)
i in place of hi in

the original list. Then at the end, add another copy of the original list with each hi replaced by h
(3)
i .

To make the total number of riders equal to 3h, add “dummy” ridersa d1, ..., d` until the number of riders
and horses is equal. Each dummy will have a list of the h(3)

i , followed by the h(2)
i and h

(1)
i (the hi can be in

any order relative to each other, as long as the time-of-day ordering is followed). Finally add the dummies
to the end of the preference lists of all horses (in any order).

We now have an instance with 6h in two groups of 3h agents each, representing riders and horses respec-
tively, and every list contains all the agents in the other group. Run the BasicStableMatching algorithm,
then delete the dummy riders, and leave any horse whose partner was deleted unmatched.

The Basic algorithm doesn’t produce unstable pairs, so we won’t either (once we delete the dummies)
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(a)(b) We claim the result is a correct assignment. First, observe that each (real) rider is matched, and no horse
is free on the first two rides. Since each horse prefers the real riders to the dummies and each rider prefers
any of the first two rides to the third, a dummy rider matched with a horse on the first two rides would
have created an unstable pair (the horse on the first two rides with any rider assigned to the third ride).
Thus no horse is free on the first two rides.

It remains to show there is no unstable pair among matched agents. Suppose, for contradiction, there is
a pair r, hi where r and hi would both prefer to be paired on ride j (over their current state). Then, by
construction of the lists, r prefers h(j)

i on its preference list and h
(j)
i prefers r on its preference list. This

would have been an unstable pair for the Basic instance. But the algorithm produces a stable matching,
which by definition has no such unstable pairs, a contradiction!

(c) Θ(h2). We have 3h agents on each side, so the guarantee on BasicStableMatching gives a Θ(h2) guaran-
tee for that call. All the other operations (copying lists, creating agents, etc.) can be done in time linear in
the size of the final instance (since it’s just copy-pasting) which is also Θ(h2) (Θ(h) agents, each with lists
of length Θ(h)).

aa “dummy” is like a dummy for clothing (a mannequin) it looks like a real rider, but doesn’t actually represent a real rider. Just like a
mannequin looks like a real person but isn’t one. Dummies are a very common tool in reductions.
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