
CSE 421 Section 1

Stable Matching



Administrivia & Introductions



Your Section TAs

• TA 1

• Anything you want to say about yourself

• TA 2

• content



Homework

● Submissions

○ LaTeX (highly encouraged)

■ overleaf.com

■ template and LaTeX guide posted on course website!

○ Word Editor that supports mathematical equations 

● All homeworks will be turned in via Gradescope

● Homeworks typically due on Wednesdays at 11:59pm 

● Remember, this quarter we have a LATE PROBLEMS policy, instead of a late 

assignments policy

○ You have up to 10 total problem late days

○ You can use up to 2 late days per problem; each part of a late day counts as a day



Announcements & Reminders

● Section Materials

○ Handouts will be provided in each section

○ Worksheets and sample solutions will be available on the course calendar later this 

evening

● HW1

○ Due Wednesday 10/4 @ 11:59pm



Stable Matching



Stable Matching

Given 2� people, in two groups, P and R, of � people, with each person having a preference 

list for members of the other group, how can we find a stable matching between them?

Perfect Matching:

● Each person p in P is paired with exactly one person r in R

● Each person r in R is paired with exactly one person p in P

Stability: No ability to exchange partners

Unstable: An unmatched pair p-r is unstable if they both prefer each other to current 

matches

Stable Matching: perfect matching with no unstable pairs



Gale-Shapley Algorithm

Algorithm to find a stable matching:

Initially all � in � and � in � are free 

while there is a free �

Let � be highest on �’s list that � has not proposed to 

if � is free 

match (�, �)  “� and � become engaged”

else // � is not free 

Let �′ be the current match of �

if � prefers � to �′

unmatch (�′, �) 

match (�, �)



Consider the following stable matching instance:

Problem 1 – Gale-Shapley

a) Run the Gale-Shapley Algorithm on the instance above. When 

choosing which free p in P to propose next, always choose the 

one with the smallest index (e.g., if p1 and p2 are both free, 

always choose p1).

p1: r3, r1, r2, r4

p2: r2, r1, r4, r3

p3: r2, r3, r1, r4

p4: r3, r4, r1, r2

r1: p4, p1, p3, p2

r2: p1, p3, p2, p4

r3: p1, p3, p4, p2

r4: p3, p1, p2, p4



Problem 1 – Gale-Shapley

a) Run the Gale-Shapley Algorithm on the instance above. When choosing which free p in P to 

propose next, always choose the one with the smallest index (e.g., if p1 and p2 are both free, 

always choose p1).

p1 chooses r3 (p1, r3)p1: r3, r1, r2, r4

p2: r2, r1, r4, r3

p3: r2, r3, r1, r4

p4: r3, r4, r1, r2

r1: p4, p1, p3, p2

r2: p1, p3, p2, p4

r3: p1, p3, p4, p2

r4: p3, p1, p2, p4



Problem 1 – Gale-Shapley

a) Run the Gale-Shapley Algorithm on the instance above. When choosing which free p in P to 

propose next, always choose the one with the smallest index (e.g., if p1 and p2 are both free, 

always choose p1).

p1 chooses r3 (p1, r3)

p2 chooses r2 (p1, r3), (p2, r2)

p1: r3, r1, r2, r4

p2: r2, r1, r4, r3

p3: r2, r3, r1, r4

p4: r3, r4, r1, r2

r1: p4, p1, p3, p2

r2: p1, p3, p2, p4

r3: p1, p3, p4, p2

r4: p3, p1, p2, p4



Problem 1 – Gale-Shapley

a) Run the Gale-Shapley Algorithm on the instance above. When choosing which free p in P to 

propose next, always choose the one with the smallest index (e.g., if p1 and p2 are both free, 

always choose p1).

p1 chooses r3 (p1, r3)

p2 chooses r2 (p1, r3), (p2, r2)

p3 chooses r2 (p1, r3), (p2, r2), (p3, r2)?

p1: r3, r1, r2, r4

p2: r2, r1, r4, r3

p3: r2, r3, r1, r4

p4: r3, r4, r1, r2

r1: p4, p1, p3, p2

r2: p1, p3, p2, p4

r3: p1, p3, p4, p2

r4: p3, p1, p2, p4



Problem 1 – Gale-Shapley

a) Run the Gale-Shapley Algorithm on the instance above. When choosing which free p in P to 

propose next, always choose the one with the smallest index (e.g., if p1 and p2 are both free, 

always choose p1).

p1: r3, r1, r2, r4

p2: r2, r1, r4, r3

p3: r2, r3, r1, r4

p4: r3, r4, r1, r2

r1: p4, p1, p3, p2

r2: p1, p3, p2, p4

r3: p1, p3, p4, p2

r4: p3, p1, p2, p4

p1 chooses r3 (p1, r3)

p2 chooses r2 (p1, r3), (p2, r2)

p3 chooses r2 (p1, r3), (p2, r2), (p3, r2)



Problem 1 – Gale-Shapley

a) Run the Gale-Shapley Algorithm on the instance above. When choosing which free p in P to 

propose next, always choose the one with the smallest index (e.g., if p1 and p2 are both free, 

always choose p1).

p1 chooses r3 (p1, r3)

p2 chooses r2 (p1, r3), (p2, r2)

p3 chooses r2 (p1, r3), (p2, r2), (p3, r2)

p2 chooses r1 (p1, r3), (p2, r1), (p3, r2)

p1: r3, r1, r2, r4

p2: r2, r1, r4, r3

p3: r2, r3, r1, r4

p4: r3, r4, r1, r2

r1: p4, p1, p3, p2

r2: p1, p3, p2, p4

r3: p1, p3, p4, p2

r4: p3, p1, p2, p4



Problem 1 – Gale-Shapley

a) Run the Gale-Shapley Algorithm on the instance above. When choosing which free p in P to 

propose next, always choose the one with the smallest index (e.g., if p1 and p2 are both free, 

always choose p1).

p1 chooses r3 (p1, r3)

p2 chooses r2 (p1, r3), (p2, r2)

p3 chooses r2 (p1, r3), (p2, r2), (p3, r2)

p2 chooses r1 (p1, r3), (p2, r1), (p3, r2)

p4 chooses r3    (p1, r3), (p2, r1), (p3, r2), (p4, r3)?

p1: r3, r1, r2, r4

p2: r2, r1, r4, r3

p3: r2, r3, r1, r4

p4: r3, r4, r1, r2

r1: p4, p1, p3, p2

r2: p1, p3, p2, p4

r3: p1, p3, p4, p2

r4: p3, p1, p2, p4



Problem 1 – Gale-Shapley

a) Run the Gale-Shapley Algorithm on the instance above. When choosing which free p in P to 

propose next, always choose the one with the smallest index (e.g., if p1 and p2 are both free, 

always choose p1).

p1 chooses r3 (p1, r3)

p2 chooses r2 (p1, r3), (p2, r2)

p3 chooses r2 (p1, r3), (p2, r2), (p3, r2)

p2 chooses r1 (p1, r3), (p2, r1), (p3, r2)

p4 chooses r3    (p1, r3), (p2, r1), (p3, r2)      (p4, r3)  failed

p1: r3, r1, r2, r4

p2: r2, r1, r4, r3

p3: r2, r3, r1, r4

p4: r3, r4, r1, r2

r1: p4, p1, p3, p2

r2: p1, p3, p2, p4

r3: p1, p3, p4, p2

r4: p3, p1, p2, p4



Problem 1 – Gale-Shapley

a) Run the Gale-Shapley Algorithm on the instance above. When choosing which free p in P to 

propose next, always choose the one with the smallest index (e.g., if p1 and p2 are both free, 

always choose p1).

p1 chooses r3 (p1, r3)

p2 chooses r2 (p1, r3), (p2, r2)

p3 chooses r2 (p1, r3), (p2, r2), (p3, r2)

p2 chooses r1 (p1, r3), (p2, r1), (p3, r2)

p4 chooses r3    (p1, r3), (p2, r1), (p3, r2)    (p4, r3)  failed

p4 chooses r4    (p1, r3), (p2, r1), (p3, r2), (p4, r4)

p1: r3, r1, r2, r4

p2: r2, r1, r4, r3

p3: r2, r3, r1, r4

p4: r3, r4, r1, r2

r1: p4, p1, p3, p2

r2: p1, p3, p2, p4

r3: p1, p3, p4, p2

r4: p3, p1, p2, p4



Problem 1 – Gale-Shapley

a) Run the Gale-Shapley Algorithm on the instance above. When choosing which free p in P to 

propose next, always choose the one with the smallest index (e.g., if p1 and p2 are both free, 

always choose p1).

p1 chooses r3 (p1, r3)

p2 chooses r2 (p1, r3), (p2, r2)

p3 chooses r2 (p1, r3), (p2, r2), (p3, r2)

p2 chooses r1 (p1, r3), (p2, r1), (p3, r2)

p4 chooses r3    (p1, r3), (p2, r1), (p3, r2)    (p4, r3)  failed

p4 chooses r4    (p1, r3), (p2, r1), (p3, r2), (p4, r4)

(p1, r3), (p2, r1), (p3, r2), (p4, r4)

p1: r3, r1, r2, r4

p2: r2, r1, r4, r3

p3: r2, r3, r1, r4

p4: r3, r4, r1, r2

r1: p4, p1, p3, p2

r2: p1, p3, p2, p4

r3: p1, p3, p4, p2

r4: p3, p1, p2, p4



Problem 1 – Gale-Shapley

b) Run the Gale-Shapley Algorithm on the instance above. When choosing which free p in P to 

propose next, always choose the one with the largest index (e.g., if p1 and p2 are both free, 

always choose p2).  Do you get the same result?

p1: r3, r1, r2, r4

p2: r2, r1, r4, r3

p3: r2, r3, r1, r4

p4: r3, r4, r1, r2

r1: p4, p1, p3, p2

r2: p1, p3, p2, p4

r3: p1, p3, p4, p2

r4: p3, p1, p2, p4

Work on parts b and c of this problem with the people around 

you, and then we’ll go over it together!

c) Now run the algorithm with the same preferences but with the 

roles of P and R reversed (that is the ri do the proposing) breaking 

ties by taking the free ri with the smallest index i.  Do you get the 

same result? 



b) Run the Gale-Shapley Algorithm on the instance above. When choosing which free p in P to 

propose next, always choose the one with the largest index (e.g., if p1 and p2 are both free, 

always choose p2).  Do you get the same result?

Problem 1 – Gale-Shapley

p1: r3, r1, r2, r4

p2: r2, r1, r4, r3

p3: r2, r3, r1, r4

p4: r3, r4, r1, r2

r1: p4, p1, p3, p2

r2: p1, p3, p2, p4

r3: p1, p3, p4, p2

r4: p3, p1, p2, p4



b) Run the Gale-Shapley Algorithm on the instance above. When choosing which free p in P to 

propose next, always choose the one with the largest index (e.g., if p1 and p2 are both free, 

always choose p2).  Do you get the same result?

Problem 1 – Gale-Shapley

p1: r3, r1, r2, r4

p2: r2, r1, r4, r3

p3: r2, r3, r1, r4

p4: r3, r4, r1, r2

r1: p4, p1, p3, p2

r2: p1, p3, p2, p4

r3: p1, p3, p4, p2

r4: p3, p1, p2, p4

The steps of the Gale-Shapley Algorithm with the free p in P with 

largest index proposing first:

p4 chooses r3 (p4, r3)

p3 chooses r2 (p3, r2),(p4, r3)

p2 chooses r2 (p3, r2),(p4, r3)     (p2, r2) failed 

p2 chooses r1 (p2, r1),(p3, r2),(p4, r3)

p1 chooses r3 (p1, r3),(p2, r1),(p3, r2),(p4, r3)

p4 chooses r4 (p1, r3),(p2, r1),(p3, r2),(p4, r4)

We ended up with the same result!



c) Now run the algorithm with the people in R proposing, breaking ties by taking the free ri with 

the smallest index. Do you get the same result? 

Problem 1 – Gale-Shapley

p1: r3, r1, r2, r4

p2: r2, r1, r4, r3

p3: r2, r3, r1, r4

p4: r3, r4, r1, r2

r1: p4, p1, p3, p2

r2: p1, p3, p2, p4

r3: p1, p3, p4, p2

r4: p3, p1, p2, p4



c) Now run the algorithm with the people in R proposing, breaking ties by taking the free ri with 

the smallest index. Do you get the same result? 

Problem 1 – Gale-Shapley

p1: r3, r1, r2, r4

p2: r2, r1, r4, r3

p3: r2, r3, r1, r4

p4: r3, r4, r1, r2

r1: p4, p1, p3, p2

r2: p1, p3, p2, p4

r3: p1, p3, p4, p2

r4: p3, p1, p2, p4

The steps of the Gale-Shapley Algorithm with the r in R proposing:

r1 chooses p4 (p4, r1)

r2 chooses p1 (p1, r2),(p4, r1)

r3 chooses p1 (p1, r3),(p1, r2),(p4, r1)

r2 chooses p3 (p1, r3),(p3, r2),(p4, r1)

r4 chooses p3 (p1, r3),(p3, r2),(p4, r1)    (p3, r4) failed 

r4 chooses p1 (p1, r3),(p3, r2),(p4, r1)    (p1, r4) failed 

r4 chooses p2 (p1, r3),(p2, r4),(p3, r2),(p4, r1)

No, the result is different when we have the r in R propose as opposed 

to the r in R .



Induction



Induction

● You will be writing lots of induction proofs in this class in order to prove that your 

algorithms work the way you say they will.

● The style requirements for proofs in this class are less stringent than the style 

requirements from 311 

○ there is a style guide doc on the course website (here) about how 421 proofs are 

different than what you did in 311



Induction Template

Let �(�) be “(whatever you’re trying to prove)”. 

We show �(�) holds for all � by induction on �.

Base Case: Show �(�) is true.

Inductive Hypothesis: Suppose �(�) holds for an arbitrary � ≥ �

Inductive Step: Show �(� + 1) (i.e. get �(�)  →  �(� + 1)) 

Conclusion: Therefore, �(�) holds for all � by the principle of induction.



Problem 3 – Induction Review

Consider the following claim:

Let �(�) be “Every tree with at least � nodes has at least two nodes of degree-one.”

a) What is the correct “skeleton” of the inductive step (i.e., the right things to assume 

and the right target)?

b) Prove the claim by induction.



Problem 3 – Induction Review

Consider the following claim:

Let �(�) be “Every tree with at least � nodes has at least two nodes of degree-one.”

a) What is the correct “skeleton” of the inductive step (i.e., the right things to assume 

and the right target)?

Work on this problem with the people around you, and then we’ll go over it together!



Problem 3 – Induction Review

Consider the following claim:

Let �(�) be “Every tree with at least � nodes has at least two nodes of degree-one.”

a) What is the correct “skeleton” of the inductive step (i.e., the right things to assume 

and the right target)?



Problem 3 – Induction Review

Consider the following claim:

Let �(�) be “Every tree with at least � nodes has at least two nodes of degree-one.”

a) What is the correct “skeleton” of the inductive step (i.e., the right things to assume 

and the right target)?

We must start with “Let �′ be an arbitrary tree with � + 1 nodes.”

Our conclusion will be that �′ has at least two nodes of degree-one, so �(� + 1)
holds.



KEY Induction Concept

It might be really tempting to structure the inductive step of this problem as something like, “start 

with an arbitrary tree � of size � nodes, and then add a node to it, making tree �′ with � + 1
nodes.” 

This is a BAD idea! Then we’d have to cover every possible way to add on a node (and prove that 

we had actually dealt with every possible case), making the overall proof way more complicated 

and unwieldly.

Instead, we ALWAYS want to start with the bigger thing (in this 

case, with the arbitrary tree �′ of size � + 1) and find the smaller 

thing inside of it. 



Problem 3 – Induction Review

Consider the following claim:

Let �(�) be “Every tree with at least � nodes has at least two nodes of degree-one.”

b) Prove the claim by induction.

Work on this problem with the people around you, and then we’ll go over it together!



Problem 3 – Induction Review

b) Prove the claim by induction.

Let P(n) be “Every tree with at least n nodes has at least two nodes of degree-one.” We prove the 

claim by induction on �.

Base Case: � = 3. There is only one undirected tree with three nodes. It has two nodes of degree-

one.

Inductive Hypothesis: Suppose �(�) holds for � = 3, … , � for an arbitrary � ≥ 3.



Problem 3 – Induction Review

b) Prove the claim by induction.

Inductive Step: Let �′ be an arbitrary tree with � + 1 nodes. Let � be a vertex of �′ of degree-one (this 

first vertex exists by the fact), and call its neighbor �. Let �′′ be the tree created by deleting � from �′.

Observe that, since u was degree-one, the only simple paths that used (�, �) had � as an endpoint (as 

once we use (�, �) to arrive at/leave � we cannot reuse it to leave/arrive). Thus �′′ is still a connected 

tree, and we can apply the IH to �′′ to conclude there are at least two vertices ��, �� of �′′ that are 
degree-one.

We now find the two degree-one nodes in the original tree ��. We know that � has degree-one (and is not 

the same as �� or �� since � was deleted to create �′′). Since � has degree-one, it can only attach to at 

most one of ��, ��, thus at least one (the other one) of ��, �� is an additional node of degree-one, as 
required.

Therefore, �′ has the required degree-one vertices. Since �′ is an arbitrary tree with � + 1 vertices, we 

have shown �(� + 1).



Proof or Counterexample?



Prove or Disprove?

Often, you will be given a statement, and then asked to either prove or disprove it. 

This can be stressful! How do you know which you should start with?

The best way to begin, especially when you don’t know if the claim is even true, is to 

try to understand it better by producing some examples. This has two main benefits 

that will help, whether you end up proving or disproving the claim:

1) You get a better understanding of the statement so now you have a clear method 

of approach, OR

2) You find a counterexample, which allows you to easily write a quick proof that the 

statement is false!



Problem 2 – A Quick Proof

Is it possible to have a stable matching instance with more than 2 stable matchings? If 

so, give an instance and at least 3 stable matchings. If not, prove that every instance 

has at most 2 stable matchings.

Work on this problem with the people around you, and then we’ll go over it together!



Problem 2 – A Quick Proof

Is it possible to have a stable matching instance with more than 2 stable matchings? If so, give an instance and 

at least 3 stable matchings. If not, prove that every instance has at most 2 stable matchings.



Problem 2 – A Quick Proof

Is it possible to have a stable matching instance with more than 2 stable matchings? If so, give an instance and 

at least 3 stable matchings. If not, prove that every instance has at most 2 stable matchings.

Consider the following instance:

p1 : r1, r2, r3, r4

p2 : r2, r1, r4, r3

p3 : r3, r4, r1, r2

p4 : r4, r3, r2, r1

r1 : p2, p1, p4, p3

r2 : p1, p2, p3, p4

r3 : p4, p3, p2, p1

r4 : p3, p4, p1, p2

This instance has four stable matchings:

(p1, r1),(p2, r2),(p3, r3),(p4, r4)

(p1, r1),(p2, r2),(p3, r4),(p4, r3)

(p1, r2),(p2, r1),(p3, r3),(p4, r4)

(p1, r2),(p2, r1),(p3, r4),(p4, r3)



That’s All, Folks!

Thanks for coming to section this week!

Any questions?


