CSE 421
Introduction to Algorithms

Lecture 28: Dealing with NP-completeness:

Fixed Parameter Tractability
SAT Solving

Reminder/Announcement

* The Final Exam is Monday December 11, 2:30-4:20 pm here

* If nobody has a conflict that would prevent them staying longer, | will extend
the time available to 4:45 pm.

* Email me (enter a Private post on Edstem) by the end of day today if you
can’t stay that long.

e See the pinned Edstem posts on Final Exam Information.

* | will run a Zoom review session on Sunday. Fill out the Edstem pollj
about the time for this session by end-of-day today.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Fixed Parameter Algorithms

The theory of fixed parameter tractability looks at NP problems using a second
parameter k in addition to input size n and seeks algorithms with running times

f(k) : n%® where f might be exponential.

T
Clique: Extra parameter k for clique size target:
Brute force algorithm: try all subsets of size k and check: @(kz@time.

Vertex-Cover: Extra parameter k for clique size target:

Brute force algorithm: try all subsets of size k and check: @(m@time.

* Neither is a good fixed parameter algorithm

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Vertex-Cover Fixed Parameter Algorithm

Vertex-Cover(C, b) {

if theredis an edge (u, V) not covered by C{

}

else

}
}

ifb > 0 {
“Vertex-Cover(C U {u}, b — 1)
1)

-

(,
Vertex-Cover(C U {v}, b —

} —

Output YES (and set C) and halt

Call Vertex-Cover(®, k)
if no answer, output NO

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

25

Analysis:
* Time to identify possible edge (u, v) not

covered (and modify C) is O(m}l);

 # of recursive calls < 2k

« Total runtime 0(2*(m + n)) /\

e

More on Fixed Parameter Algorithms

Many graph problems can be given a second parameter k called thef the input graph.

* Treewidth 1 graphs are trees (technically forests).
* Multiple natural definitions of treewidth (here’s one): /<
* Graph G = (V,E) is treewidth at most k iff there is a tree T such that
* each node u of T is labelled by a subset V, @ erticesinV
» for every edge (v,w) € E there is a node u of T such that both v,w € V,,.
e forevery v € V the set of nodesu in T withv € V,, is connected in T

* The tree with the sets are called the tree decomposition of G.
The minimum k and tree decomposition can be found in linear time.

The tree defines a natural elimination ordering for recursive algorithms on the grapD //e”g
* Fact: &

stacle to treewidth k — 1: the k X k grid graph.

Many NP-hard problems are efficiently solvable on graphs of bounded treewidth.

Treewidth also comes up in route-finding in Google Maps: Can’t run full-blown Dijkstra on the whole
graph every time a user requests a route.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

What to do if the problem you want to solve is NP-hard

Try to make an exponential-time solution as efficient as possible.

e.g. Try to search the space of possible hints/certificates in a more efficient way and
hope that it is quick enough.

Backtracking search

e.g., for SAT, search through the 2™ possible truth assignments...

...but set the truth values one-by-one so we can able to figure out whole parts
of the space to avoid,

e.g. Given F = (ﬂxl V xZ) N (ﬂXz V X3) N (X4 V ﬂXg) N (x1 V X4_)

after setting x; = 1 and x, = 0 we don’t even need to set x5 or x4 to
know that it won’t satisfy F.

Now: More clever backtracking search for SAT solutions

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

SAT Solving

SAT is an extremely flexible problem:

* The fact that SAT is an NP-complete problem says that we can
re-express a huge range of problems as SAT problems

This means that good algorithms for SAT solving would be useful
for a huge range of tasks.

Since roughly2001, there has been a massive improvement in our
ability to so AT on a wide range of practical instances

* These algorithms aren’t perfect. They fail on many worst-case instances.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Satisfiability Algorithms

Local search: Solve SAT as a special case of MaxSAT
(incomplete, may fail to find satisfying assignment)

GSAT — random local search [Selman,Levesque,Mitchell 92]

Walksat — Metropolis [Kautz,Selman 96]

Backtracking search (complete)
* DPLL [Davis,Putnam 60], [Davis,Logeman,Loveland 62]

* CDCL: Adds clause learning and restarts

GRASP, SATO, zchaff, MiniSAT, Glucose, etc.
- —=

\

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

CNF Satisfiability

SAT: satisfiability problem for CNF formulas with any clause size

Write CNFs with the A between clauses implicit:
F=(x1VX3Vx)(x1Vx3)(x3Vxy)(xyVxs)

Write assignment as literals assigned true: xq, x5, X3, X4

Defn: Given partial assignment x; where
F=(x1Vx3Vx4)(X1Vx3)(X3V x2)(X4 V X3)

define simplify(F, x3) by

simplify(F, x3)= (x1 V X3 V x4) Xz Xy
2

——

That is: remove satisfied clauses and remove unsatisfied literals from clauses.

Note: F is satisfiable iff all clauses disappear under some assignment.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Backtracking search/DPLL

<€
repeat
select a literal £ (some x or x)
. . free step
F < simplify(F,?); t < append(t,¥)]'
while F contains a 1-clause ¢’ | |
F < simplify(F,¢"); t < append(t, ¢") it S
if F has no clauses return t as satisfying assignment
if F has an empty clause
backtrack to last free step and flip assignment (step no longer free)

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Recursive view of DPLL (without unit propagation)

DPLL(F):

if F is empty report satisfiable and halt
if F contains the empty clause

return

—

with unit propagation choose x to be the literal of a 1-clause if possible

else choose a literal x
DPLL(simplify(F, x))
DPLL(simplify(F, x))

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

DPLL on UNSAT formula

Clauses
avbvec
. av—C
—b

. —avd
—|d\/ b

ODWN =

Residual
Formula

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Extending DPLL: Clause Learning

* When backtracking in DPLL, add new clauses
corresponding to causes of failure of the search

* Added conflict clauses
e Capture reasons of conflicts
e Obtained via unit propagations from known ones
e Reduce future search by producing conflicts sooner

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Conflict Graph: Graph of Unit Propagations

At each conflict (derivation of them empty cIause) the negations of the
predecessor node labels across any cut form an implied clause.
» if clause is false then could derive L

Known Clauses

(pvqva) <~
(wav-abv—ot)4 learn

(T\/—l) _'P
(v o) I~ Oy
(X1 VXV X3VY) —q Q/:\

(XIVXZVX:))\/_IY)

Decisi —t _IXZ/OJ_
ecisions -
_AP= false O S
¢q = false 3
/] learn
/;\b = true 5 learn
(pvqv—b) (X V X, V X3)

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Best Current SAT Solvers

Conflict-Directed Clause-Learning (CDCL) Algorithms
Minisat, Glucose, MapleSAT, CaDiCal

They rely on many optimizations:

* No explicit computation of residual formulas, just fast calculation of the unit
propagations that will happen. “watched literals”

No explicit backtracking: New clauses always chosen to generate unit
propagations higher in the tree. “asserting clauses”

Heuristics based on learned clauses to decide what free choices to make. “VSIDS”

Pruning of cache of learned clauses so only recently used ones are kept.

Periodic restarting search with original formula plus learned clauses.

etc...

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Best Current SAT Solvers

Conflict-Directed Clause-Learning (CDCL) Algorithms
Minisat, Glucose, MapleSAT, CaDiCal

They work well on many practical formulas even with hundreds of thousands of
variables or more.

* Often used in proving properties of human-produced designs.

* They are incorporated in software verification tools and a variety of automated
reasoning (SMT Solvers)

* We really don’t know why they work so well.
» Definitely worth a try!

However, they provably perform very badly even on some small formulas of a few
hundred or thousand variables. We have a pretty good idea why.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

