
CSE 421

Introduction to Algorithms

Lecture 28: Dealing with NP-completeness:

Fixed Parameter Tractability

SAT Solving

1

Reminder/Announcement

• The Final Exam is Monday December 11, 2:30-4:20 pm here

• If nobody has a conflict that would prevent them staying longer, I will extend

the time available to 4:45 pm.

• Email me (enter a Private post on Edstem) by the end of day today if you

can’t stay that long.

• See the pinned Edstem posts on Final Exam Information.

• I will run a Zoom review session on Sunday. Fill out the Edstem poll

about the time for this session by end-of-day today.

2

Fixed Parameter Algorithms

The theory of fixed parameter tractability looks at �� problems using a second

parameter � in addition to input size � and seeks algorithms with running times

� � ⋅ �� � where � might be exponential.

Clique: Extra parameter � for clique size target:

Brute force algorithm: try all subsets of size � and check: 	(����) time.

Vertex-Cover: Extra parameter � for clique size target:

Brute force algorithm: try all subsets of size � and check: 	(
��) time.

• Neither is a good fixed parameter algorithm

3

Vertex-Cover Fixed Parameter Algorithm

Vertex-Cover(�, �) {

if there is an edge (�, �) not covered by �{
if � > � {

Vertex-Cover(� ∪ {�}, � − �)

Vertex-Cover(� ∪ {�}, � − �)

}

}

else

Output YES (and set �) and halt

}

}

Call Vertex-Cover(∅, �)

if no answer, output NO

Analysis:

• Time to identify possible edge (�, �) not

covered (and modify �) is �(
 + �)

• # of recursive calls ≤ ��

• Total runtime �(��(
 + �))

4

More on Fixed Parameter Algorithms

Many graph problems can be given a second parameter � called the treewidth of the input graph.

• Treewidth 1 graphs are trees (technically forests).

• Multiple natural definitions of treewidth (here’s one):

• Graph � = (�,) is treewidth at most � iff there is a tree ! such that

• each node � of ! is labelled by a subset �� of ≤ � vertices in �

• for every edge �, " ∈ there is a node � of ! such that both �, " ∈ ��.

• for every � ∈ � the set of nodes � in ! with � ∈ �� is connected in !

• The tree with the sets are called the tree decomposition of �.

The minimum � and tree decomposition can be found in linear time.

The tree defines a natural elimination ordering for recursive algorithms on the graph.

• Fact: Obstacle to treewidth � − �: the � × � grid graph.

Many NP-hard problems are efficiently solvable on graphs of bounded treewidth.

Treewidth also comes up in route-finding in Google Maps: Can’t run full-blown Dijkstra on the whole

graph every time a user requests a route.

5

What to do if the problem you want to solve is NP-hard

Try to make an exponential-time solution as efficient as possible.

e.g. Try to search the space of possible hints/certificates in a more efficient way and

hope that it is quick enough.

Backtracking search

e.g., for SAT, search through the �� possible truth assignments...

...but set the truth values one-by-one so we can able to figure out whole parts

of the space to avoid,

e.g. Given % = (¬'� ∨ '�) ∧ ¬'� ∨ '* ∧ '+ ∨ ¬'* ∧ ('� ∨ '+)

after setting '� = � and '� = � we don’t even need to set '* or '+ to

know that it won’t satisfy %.

Now: More clever backtracking search for SAT solutions

6

SAT Solving

SAT is an extremely flexible problem:

• The fact that SAT is an ��-complete problem says that we can

re-express a huge range of problems as SAT problems

This means that good algorithms for SAT solving would be useful

for a huge range of tasks.

Since roughly 2001, there has been a massive improvement in our

ability to solve SAT on a wide range of practical instances

• These algorithms aren’t perfect. They fail on many worst-case instances.

7

Satisfiability Algorithms

Local search: Solve SAT as a special case of MaxSAT

(incomplete, may fail to find satisfying assignment)

GSAT – random local search [Selman,Levesque,Mitchell 92]

Walksat – Metropolis [Kautz,Selman 96]

Backtracking search (complete)

• DPLL [Davis,Putnam 60], [Davis,Logeman,Loveland 62]

• CDCL: Adds clause learning and restarts

GRASP, SATO, zchaff, MiniSAT, Glucose, etc.

8

CNF Satisfiability

SAT: satisfiability problem for CNF formulas with any clause size

Write CNFs with the ∧ between clauses implicit:

% = '� ∨ '� ∨ '+ ('� ∨ '*)('* ∨ '�)('+ ∨ '*)

Write assignment as literals assigned true: '�, '�, '*, '+

Defn: Given partial assignment '* where

% = '� ∨ '� ∨ '+ ('� ∨ '*)('* ∨ '�)('+ ∨ '*)

define simplify(%, '*) by

simplify(%, '*)= '� ∨ '� ∨ '+ ('� ∨ '*)('* ∨ '�)('+ ∨ '*)

That is: remove satisfied clauses and remove unsatisfied literals from clauses.

Note: % is satisfiable iff all clauses disappear under some assignment.

9

% = '� ∨ '� ∨ '+ ('� ∨ '*)('* ∨ '�)('+ ∨ '*)

Backtracking search/DPLL

t ← ε

repeat

select a literal ℓ (some ' or ')

% ← simplify(%, ℓ); t ← append(t, ℓ)

while % contains a �-clause ℓ′
% ← simplify(%, ℓ′); t ← append(t, ℓ′)

if % has no clauses return t as satisfying assignment

if % has an empty clause

backtrack to last free step and flip assignment (step no longer free)

10

free step

unit propagation

11

DPLL(%):

if % is empty report satisfiable and halt

if % contains the empty clause

return

else choose a literal '

DPLL(simplify(%, '))

DPLL(simplify(%, '))

with unit propagation choose ' to be the literal of a 1-clause if possible

Recursive view of DPLL (without unit propagation)

Clauses

1. a∨ b∨ c
2. a∨¬c
3. ¬b
4. ¬a∨ d
5. ¬d∨ b

12

DPLL on UNSAT formula

a
¬a

b
¬b b

3

¬b

1

a∨ b∨ c

c
¬c

2

a∨¬c

c

a

b

d 3

4 5

¬d d

b

¬b

¬a∨ d ¬d∨ b

¬b

Residual

Formula

Clauses

1. a∨ b∨ c
2. a∨¬c
3. ¬b
4. ¬a∨ d
5. ¬d∨ b

12

Extending DPLL: Clause Learning

• When backtracking in DPLL, add new clauses

corresponding to causes of failure of the search

• Added conflict clauses

• Capture reasons of conflicts

• Obtained via unit propagations from known ones

• Reduce future search by producing conflicts sooner

13

14

Conflict Graph: Graph of Unit Propagations

learn

(x1 ∨ x2 ∨ x3)

learn

(p ∨ q ∨ ¬ b)

learn

t
¬p

¬q

b

a

¬x1

¬x2

¬x3

y

⊥¬t

Known Clauses

(p ∨ q ∨ a)
(¬ a ∨ ¬ b ∨ ¬ t)
(t ∨ ¬ x1)
(t ∨ ¬ x2)
(t ∨ ¬ x3)
(x1 ∨ x2 ∨ x3 ∨ y)
(x1 ∨ x2 ∨ x3 ∨ ¬ y)

Decisions

p = false
q = false
b = true

At each conflict (derivation of them empty clause) the negations of the

predecessor node labels across any cut form an implied clause.

• if clause is false then could derive ⊥

14

Best Current SAT Solvers

Conflict-Directed Clause-Learning (CDCL) Algorithms
Minisat, Glucose, MapleSAT, CaDiCaL

They rely on many optimizations:

• No explicit computation of residual formulas, just fast calculation of the unit
propagations that will happen. “watched literals”

• No explicit backtracking: New clauses always chosen to generate unit
propagations higher in the tree. “asserting clauses”

• Heuristics based on learned clauses to decide what free choices to make. “VSIDS”

• Pruning of cache of learned clauses so only recently used ones are kept.

• Periodic restarting search with original formula plus learned clauses.

• etc...

15

Best Current SAT Solvers

Conflict-Directed Clause-Learning (CDCL) Algorithms
Minisat, Glucose, MapleSAT, CaDiCaL

They work well on many practical formulas even with hundreds of thousands of
variables or more.

• Often used in proving properties of human-produced designs.

• They are incorporated in software verification tools and a variety of automated
reasoning (SMT Solvers)

• We really don’t know why they work so well.

• Definitely worth a try!

However, they provably perform very badly even on some small formulas of a few
hundred or thousand variables. We have a pretty good idea why.

16

