
CSE 421

Introduction to Algorithms

Lecture 27: Dealing with NP-completeness:

LP Approximation

Local Search

Exponential-time Algorithms
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Reminder/Announcement

• The Final Exam is Monday December 11, 2:30-4:20 pm here

• I don’t think that there is an exam after that in this room.

• If there is extra time and nobody has a conflict that would 

prevent them staying longer, I will extend the time available.

• Email me ASAP if you have a conflict with staying longer

• I will send an email later today with information about the 

exam and a sample final

• It will be comprehensive and similar in style to the midterm.
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What to do if the  problem you want to solve is NP-hard

2nd thing to try if your problem is a minimization or maximization problem

• Try to find a polynomial-time worst-case approximation algorithm

• For a minimization problem 

• Find a solution with value ≤ � times the optimum

• For a maximization problem

• Find a solution with value ≥ �/� times the optimum

Want � to be as close to � as possible.
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Approximation Algorithms using Linear Programming

The generic approach to creating approximation algorithms for ��-optimization 
problems using  Linear Programming:

1. Express the original problem as an Integer Program (ILP) or 01-Program (01-LP)

2. Keep same linear constraints but remove the integer requirement to get an LP.  
(Called the “LP relaxation”.)

3. Solve the LP to yield a fractional solution

4. “Round” the fractional solution to an integer solution that satisfies all constraints.

Prove a bound on the ratio of the integer solution to the fractional LP solution

Observation: The LP optimum has at least as good an objective function value as the 
original problem since the LP allows all the ILP solutions plus some other fractional 
ones.
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Recall:  Greedy Approximation for Vertex-Cover

On input � = (�, )
� ← ∅
� ← 
while � ≠ ∅

select any � = �, � ∈ ′
� ← � ∪ {�, �}
� ← ′ ∖ {edges � ∈ ′ that touch � or �} 

Claim: At most a factor ) larger than the optimal vertex-cover 

size. 

Proof: Edges selected don’t share any vertices so any vertex-

cover must choose at least one of � or � each time. 
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Weighted Vertex Cover

Weighted Vertex Cover: 

Given graph � = (�, ) with each vertex � having a weight *� ≥ +.   

Find a vertex cover , ⊆ � of � that minimizes ∑ *�/�∈, .

The greedy approximation approach doesn’t work for this weighted 

version because for each edge, one of the two endpoints might have 

much larger weight than the other.
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Weighted Vertex-Cover as an Integer Program

Variables   0� for � ∈ �
Minimize ∑ *� ⋅ 0�/�∈� 
subject to

0� + 0� ≥ � for each edge �, � ∈ 
0� ∈ {+, �} for each node � ∈ �

The last line is equivalent to:

  + ≤ 0� ≤ � for each node � ∈ �
0� integral for each node � ∈ �

Write 345 for the optimum cover weight

LP relaxation:

Minimize ∑ *� ⋅ 0�/�∈� 
subject to

0� + 0� ≥ � for each edge �, � ∈ 
      + ≤ 0� ≤ � for each node � ∈ �

Write 34564 for the optimum LP value

How do we round a LP solution achieving 

this value?
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LP-Rounding to Approximate Weighted Vertex Cover

1. Solve the LP Relaxation

a) Solution gives values 0� ∈ [+, �] for each � ∈ �
b) 0� + 0� ≥ � for each edge (�, �)

2. Round:   Define , ⊆ � to be {� ∶  0� ≥ �/)}
3. Observe that , is a vertex cover: 

• By 1 b), for each edge (�, �), at least one of 0� ≥ �/) or 0� ≥ �/) is true so   

either � ∈ , or � ∈ ,.

4. Since 0� ≥ �/) for every � ∈ ,, the total weight of , is      ∑ *�/�∈, ≤ ∑ *� ⋅ ()0�)/�∈, 
= ) ∑ *� ⋅ 0�≤/�∈, ) ∑ *� ⋅ 0�= ) 34564/�∈� ≤ ) 345.
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More on LP and Related Approximation Methods

More sophisticated methods for rounding variables 0: ∈ +, �
• Randomized: View each 0: as a probability and independently produce 

solution ;: = <� with probability 0:+ with probability � − 0:
• Correlated random sampling.  Apply the above but “correlate” choices somehow

Instead of LP relaxations, use “Semi-Definite Programming (SDP)” 

relaxations.

• SDPs generalize LPs.   They can also be solved efficiently using Ellipsoid and 

Interior Point Methods.   They are a special case of convex programming.

• Currently yield the best approximations known for many ��-hard problems.
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What to do if the problem you want to solve is NP-hard

��-completeness is a worst-case notion...

• Try an algorithm that is provably fast “on average”.

• To even show this one needs a model of what a typical instance is.

• Typically, people consider “random graphs”

• e.g. all graphs with a given # of edges are equally likely

• In this case one can sometimes show that many NP-hard problems are 

easy

• Problems:

• real data doesn’t look like the random graphs

• distributions of real data aren’t analyzable
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Heuristic Algorithms

These algorithms typically do not have proven bounds on solution quality: 

The most important of these methods are based on variants of

Local search:

• Need a notion of two solutions being neighbors

Start at an arbitrary solution D
While there is a neighbor 5 of D that is better than D

D�5
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e.g., Neighboring solutions for TSP

Solution D Solution 5

Two solutions are neighbors* 

iff there is a pair of edges you can

swap to transform one to the other

*These are called 2-OPT neighbors.  There are other more sophisticated neighbor structures
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Variants of Local Search

Basic local search (greedy)

• Usually fast but often gets stuck in a local optimum that is far from the 

global optimum

• With some notions of neighbor structure even this can take a long time in 

the worst case

Randomized local search:

Start local search several times from random starting points and take the best 

answer found overall.

• More expensive than plain local search but usually much better answers.  It 

is usual easy to control the time spent so this is almost always better to do.
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Variants of Local Search

Metropolis Algorithm

Like randomized local search except that at each step one always chooses a random 

neighbor but doesn’t always move to it: 

e.g. Always move to the neighbor if it is better but move to a worse neighbor    

with some fixed probability depending on how much worse it is.

(Fixed inverse temperature.)   cf. CSE 312 Markov Chain Knapsack assignment.

Advantage: If local optima are not too deep/steep, will not get stuck there.   

However can still get stuck 

Often used in practice.  Drawback:   Each run can be much longer than local search 

but one can hope to try to make it up with solution quality.     A good option to 

compare with randomized local search.  It is unclear which will be better in a given 

circumstance.
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Variants of Local Search

Simulated Annealing

Like Metropolis algorithm but probability of going to a worse neighbor is set to 

decrease with time on a “cooling schedule” as, presumably, solution is closer to 

optimal

(analogy with slow cooling to get to lowest energy state in a crystal (or in 

forging a metal)

Much slower to converge than Metropolis.

Most improvement occurs at some fixed temperature. 

Answers usually not much better than Metropolis, if at all, so not generally worth 

the extra compute time.
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What to do if the problem you want to solve is NP-hard

Maybe you only need to solve it if the solution size is small...

• What if you only need find cliques or vertex covers of constant size?

• For both Clique and Vertex Cover, the obvious brute force 

algorithm would have time E(FG):  try all subsets of size G.

• For Clique the best algorithms known are all FH(G)
• However, Vertex Cover has a much better algorithm with 

The theory of fixed parameter tractability looks at �� problems using a 

second parameter G in addition to input size F and seeks algorithms 

with running times I G ⋅ F3 � where I might be exponential.

• More later
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What to do if the problem you want to solve is NP-hard

Try to make an exponential-time solution as efficient as possible.  

e.g. Try to search the space of possible hints/certificates in a more efficient way and 

hope that it is quick enough.

Backtracking search 

e.g., for SAT, search through the )F possible truth assignments...

...but set the truth values one-by-one so we can able to figure out whole parts 

of the space to avoid,

e.g.  Given J = (¬0� ∨ 0)) ∧ ¬0) ∨ 0N ∧ 0O ∨ ¬0N ∧ (0� ∨ 0O)
after setting 0� = � and 0) = + we don’t even need to set 0N or 0O to 

know that it won’t satisfy J.

Next Class:  Much more clever backtracking search for SAT solutions
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Exponential-Time Algorithms

Branch-and-bound search for optimization problems:

• Branch:  Use backtracking search through a tree representing partial solutions

• Bound: In addition to keeping track of the best full solution found so far, at each step 

produce a bound on the quality of the best possible completion of the current 

partial solution

• If that best possible completion is worse than the best full solution found so far, 

prune the search and backtrack instead.

Example:   In backtracking search for MetricTSP one can use linear programming to 

provide lower bounds

Note: An excellent exact solver for MetricTSP called Concorde combines branch-

and-bound and LP/ILP methods and will solve problems involving thousands of cities. 
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Other Heuristic Algorithms you might hear about

Genetic algorithms:

• View each solution as a string (analogy with DNA)

• Maintain a population of good solutions

• Allow random mutations of single characters of individual solutions

• Combine two solutions by taking part of one and part of another (analogy 
with crossover in sexual reproduction)

• Get rid of solutions that have the worst values and make multiple copies of 
solutions that have the best values (analogy with natural selection -- survival 
of the fittest).

Usually very slow.   In the rare cases when they produce answers with better 
objective function values than other methods they tend to produce very brittle
solutions – that are very bad with respect to small changes to the requirements.
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Deep Neural Nets and NP-hardness?

• Artificial neural networks

• based on very elementary model of human neurons

• Set up a circuit of artificial neurons

• each artificial neuron is an analog circuit gate whose 
computation depends on a set of connection strengths

• Train the circuit

• Adjust the connection strengths of the neurons by giving 
many positive & negative training examples and seeing if it 
behaves correctly

• The network is now ready to use

Despite their wide array of applications, they have not been shown to 
be useful for NP-hard problems.
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Quantum Computing and NP-hardness?

Use physical processes at the quantum level to implement “weird” kinds of circuit gates 

based on unitary transformations

• Quantum objects can be in a “superposition” of many pure states at once

• Can have F objects together in a superposition of )F states

• Each quantum circuit gate operates on the whole superposition of states at once

• Inherent parallelism but classical randomized algorithms have a similar 

parallelism: not enough on its own

• Advantage over classical: copies interfere with each other.  

• Exciting direction - theoretically able to factor efficiently. 

Major practical problems wrt errors, decoherence to be overcome.

• Small brute force improvement but unlikely to produce exponential advantage for NP.
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