
CSE 421

Introduction to Algorithms

Lecture 26: Dealing with NP-completeness:

Approximation Algorithms

1

Some other ��-complete examples you should know

Hamiltonian-Cycle: Given a directed graph � = �, � . Is there a cycle in �
that visits each vertex in � exactly once?

Hamiltonian-Path: Given a directed graph � = �, � . Is there a path � in

� of length 	 − � that visits each vertex in � exactly once?

Same problems are also ��-complete for undirected graphs

Note: If we asked about visiting each edge exactly once instead of each

vertex, the corresponding problems are called Euler Tour, Eulerian-Path and

are polynomial-time solvable.

2

Travelling-Salesperson Problem (TSP)

Travelling-Salesperson Problem (TSP):

Given: a set of 	 cities ��, … , �	 and distance function � that gives distance

�(��, ��) between each pair of cities

Find the shortest tour that visits all 	 cities.

DecisionTSP:

Given: a set of 	 cities ��, … , �	 and distance function � that gives distance

�(��, ��) between each pair of cities and a distance �

Is there a tour of total length at most � that visits all 	 cities?

3

��-complete problems we’ve discussed

3SAT → → → → Independent-Set → Clique

↓↓↓↓

Vertex-Cover → 01-Programming → Integer-Programming

↓↓↓↓

Set-Cover

3Color

Subset-Sum

Hamiltonian-Cycle → DecisionTSP

Hamiltonian-Path

4

Some intermediate problems

Problems reducible to �� problems not known to be polytime:

Basis for the security of current cryptography:

• Factoring: Given an integer � in binary, find its prime factorization.

• Discrete logarithm: Given prime � in binary, and � and � modulo �.

Find � such that � ≡ ��(mod �) if it exists.

Best algorithms known are � ! 	�/#
time.

Other famous ones:

• Graph Isomorphism: Given graphs � and $, can they be relabelled to be the same?

Best algorithm now 	% &'(�	 (recently improved from � ! 	�/#
) time.

• Nash equilibrium: Given a multiplayer game, find randomized strategies for each

player so that no player could do better by deviating.

5

What to do if the problem you want to solve is NP-hard

1st thing to try:

• You might have phrased your problem too generally

• e.g., In practice, the graphs that actually arise are far from arbitrary

• Maybe they have some special characteristic that allows you to solve the

problem in your special case

• For example the Independent-Set problem is easy on “interval graphs”

• Exactly the case for the Interval Scheduling problem!

• Search the literature to see if special cases already solved

6

What to do if the problem you want to solve is NP-hard

2nd thing to try if your problem is a minimization or maximization problem

• Try to find a polynomial-time worst-case approximation algorithm

• For a minimization problem

• Find a solution with value ≤ * times the optimum

• For a maximization problem

• Find a solution with value ≥ �/* times the optimum

Want * to be as close to � as possible.

7

Greedy Approximation for Vertex-Cover

On input � = (�, �)

, ← ∅

�/ ← �

while �/ ≠ ∅

select any 1 = 2, � ∈ �′

, ← , ∪ {2, �}

�/ ← �′ ∖ {edges 1 ∈ �′ that touch 2 or �}

Claim: At most a factor � larger than the optimal vertex-cover size.

Proof: Edges selected don’t share any vertices so any vertex-cover must choose

at least one of 2 or � each time.

This actually a better approximation

factor than the greedy algorithm that

repeatedly chooses the highest degree

vertex remaining that you considered

on Homework 3.

8

Set-Cover

Find smallest

collection of sets

containing every point

9

Set-Cover

Set cover size 4

Find smallest

collection of sets

containing every point

10

Set-Cover Greedy Set Cover: Repeatedly choose the set

that covers the most # of new elements

Find smallest

collection of sets

containing every point

11

Set-Cover Greedy Set Cover: Repeatedly choose the set

that covers the most # of new elements

Find smallest

collection of sets

containing every point

12

Set-Cover Greedy Set Cover: Repeatedly choose the set

that covers the most # of new elements

Find smallest

collection of sets

containing every point

13

Find smallest

collection of sets

containing every point

Set-Cover Greedy Set Cover: Repeatedly choose the set

that covers the most # of new elements

Theorem:Greedy finds best cover up to a factor of ln 	.

14

Greedy Set Cover: Repeatedly choose the set

that maximizes # new elements covered

15

Greedy Set Cover: Repeatedly choose the set

that maximizes # new elements covered

16

Greedy Set Cover: Repeatedly choose the set

that maximizes # new elements covered

17

Greedy Set Cover: Repeatedly choose the set

that maximizes # new elements covered

18

Greedy Set Cover: Repeatedly choose the set

that maximizes # new elements covered

19

Greedy Set Cover: Repeatedly choose the set

that maximizes # new elements covered

Greedy solution:

D sets

Greedy solution:

∼ log�	 sets

Greedy Set Cover: Repeatedly choose the set

that maximizes # new elements covered

Optimal:

� sets

21

Greedy Approximation to Set-Cover

Theorem: If there is a set cover of size F then the greedy set cover has

size ≤ F ln 	.

Proof: Suppose that there is a set cover of size F.

At each step all elements remaining are covered by these F sets.

So always a set available covering ≥ �/F fraction of remaining elts.

So # of uncovered elts after � sets ≤ � −
�

F
× # after � − � sets.

Total after H sets ≤ 	 � −
�

F

H

< 	 ⋅ 1KH/F = � for H = F ln 	.

22

� − � < 1K� for � > M

Travelling-Salesperson Problem (TSP)

Travelling-Salesperson Problem (TSP):

Given: a set of 	 cities ��, … , �	 and distance function � that gives distance

�(��, ��) between each pair of cities

Find the shortest tour that visits all 	 cities.

MetricTSP:

The distance function � satisfies the triangle inequality:

� 2, N ≤ � 2, � + �(�, N)

Proper tour: visit each city exactly once.

23

Minimum Spanning Tree Approximation: Factor of 2

24

TSP: Minimum Spanning Tree Factor 2 Approximation

Any tour contains a spanning tree

so PQR � ≤ RSTUSVR(�)

Euler tour covers each edge twice

so RSTUPQR � = � PQR(�)

This visits each node more than once, so not a proper tour.

So RSTUPQR � = � PQR � ≤ � RSTUSVR(�)

Euler Tour of doubled MST:

25

Why did this work?

• We found an Euler tour on a graph that used the edges of the

original graph (possibly repeated).

• The weight of the tour was the total weight of the new graph.

• Suppose now

• All edges possible

• Weights satisfy the triangle inequality (MetricTSP)

26

MetricTSP: Minimum Spanning Tree Factor 2 Approximation

Any tour contains a spanning tree

so PQR � ≤ RSTUSVR(�)

Euler tour covers each edge twice

so RSTUPQR � = � PQR(�)

Euler Tour of doubled MST:

Instead: take shortcut to next unvisited vertex on the Euler tour

By triangle inequality this can only be shorter.

So RSTUPQR � = � PQR � ≤ � RSTUSVR(�)

27

MetricTSP: Minimum Spanning Tree Factor 2 Approximation

Any tour contains a spanning tree

so PQR � ≤ RSTUSVR(�)

So RSTUPQR � = � PQR � ≤ � RSTUSVR(�)

Instead: take shortcut to next unvisited vertex on the Euler tour

By triangle inequality this can only be shorter.

Euler tour covers each edge twice

so RSTUPQR � = � PQR(�)

28

MetricTSP: Minimum Spanning Tree Factor 2 Approximation

Any tour contains a spanning tree

so PQR � ≤ RSTUSVR(�)

So RSTUPQR � = � PQR � ≤ � RSTUSVR(�)

Final:

Instead: take shortcut to next unvisited vertex on the Euler tour

By triangle inequality this can only be shorter.

Euler tour covers each edge twice

so RSTUPQR � = � PQR(�)

29

Christofides Algorithm: A factor 3/2 approximation

Any subgraph of the weighted complete graph that has an Euler Tour will work also!

Fact: To have an Euler Tour it suffices to have all degrees even.

Christofides Algorithm:

• Compute an MST R

• Find the set S of odd-degree vertices in R

• Add a minimum-weight perfect matching* P on the vertices in S to R to make every vertex
have even degree

• There are an even number of odd-degree vertices!

• Use an Euler Tour � in R ∪ P and then shortcut as before

Theorem: WXYH � ≤ �. D RSTUSVR

*Requires finding optimal matchings in general graphs, not just bipartite ones

30

Christofides Approximation

Any tour contains a spanning tree

so PQR ≤ RSTUSVR

We just need to show that the matching P

has [XYH P ≤ RSTUSVR/�

31

Christofides Approximation

� [XYH P ≤ [XYH P� + [XYH P� ≤ RSTUSVR

Any tour costs at least the cost of two matchings P� and P� on S

Tour

32

Christofides Approximation Final Tour

Total [XYH � ≤ # RSTUSVR/�

33

Max-3SAT Approximation

Max-3SAT: Given a 3CNF formula \ find a truth assignment that satisfies

the maximum possible # of clauses of \.

Observation: A single clause on 3 variables only rules out �/] of the possible truth

assignments since each literal has to be false to be ruled out.

⇒ a random truth assignment will satisfy the clause with probability _/].

So in expectation, if \ has ` clauses, a random assignment satisfies _`/] of them.

A greedy algorithm can achieve this: Choose most frequent literal appearing in

clauses that are not yet satisfied and set it to true.

If � ≠ �� no better approximation is possible

34

Knapsack Problem

Each item has a value �� and a weight N�.

Maximize ∑ ���∈Q with ∑ N��∈Q ≤ ,.

Theorem: For any b > M there is an algorithm that produces a solution

within (� + b) factor of optimal for the Knapsack problem with running

time c(�/b�)

“Polynomial-Time Approximation Scheme” or PTAS

Algorithm: Maintain the high order bits in the dynamic programming

solution.

35

Hardness of Approximation

Polynomial-time approximation algorithms for ��-hard optimization problems

can sometimes be ruled out unless � = ��.

Easy example:

Coloring: Given a graph � = (�, �) find the smallest F such that � has a

F-coloring.

Because #-coloring is ��-hard, no approximation ratio better than d/# is possible unless � = ��

because you would have to be able to figure out if a #-colorable graph can be colored in < d

colors. i.e. if it can be #-colored.

• We now know a huge amount about the hardness of approximating

�� optimization problems if � ≠ ��.

• Approximation factors are very different even for closely related problems like

Vertex-Cover and Independent-Set.

36

Approximation Algorithms/Hardness of Approximation

Research has classified many problems based on what kinds of polytime

approximations are possible if � ≠ ��

• Best: (� + b) factor for any b > M. (PTAS)

• packing and some scheduling problems, TSP in plane

• Some fixed constant factor > �. e.g. �, #/�,]/_, �MM

• Vertex Cover, Max-3SAT, MetricTSP, other scheduling problems

• Exact best factors or very close upper/lower bounds known for many problems.

• Θ(log) factor

• Set Cover, Graph Partitioning problems

• Worst: Ω(�Kb) factor for every b > M.

• Clique, Independent-Set, Coloring

37

38

39

3

4

4

2

7

2

79

6

6

6

6

5

5

4

5

5

5

5

5

1

1

1

1

1

4

1

3
3

3

3 3

3

3
3

3

3

3
3

3

3

3

3

3

3

4

7 9
3 3

7 3
93 35

1 33

37
5 3 35 1

3
7

