CSE 421
Introduction to Algorithms

Lecture 26: Dealing with NP-completeness:

Approximation Algorithms




Some other NP-complete examples you should know

Hamiltonian-Cycle: Given a directed graph G = (V, E). Is there a cyclein G
that visits each vertex in V exactly once?

Hamiltonian-Path: Given a directed graph G = (V, E). Is there a path p in
G of length n — 1 that visits each vertex in VV exactly once?

Same problems are also NP-complete for undirected graphs r@

Note: If we asked about visiting eacactly once instead of each

vertex, the corresponding problems areCalled Euler Tour, Eulerian-Path and
are polynomial-time solvable.
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Travelling-Salesperson Problem (TSP)

Travelling-Salesperson Problem (TSP):

Given: a set of n cities v, ..., V,, and distance function d that gives distance
d(v;, v;) between each pair of cities

Find the shortest t that visits all n cities.
ind the shortest tour that visits all n cities | (//A/V\C}/C/(/E/.%é)@u/%@/

/ d(\J JB\-)

DecisionTSP: ~
! c OMUL, U\l\/)_' 5&”&.
Given: a set of n cities v, ..., V,, and distance function d that gives distance \/
d(v;,v;) between each pair of cities and a distance D D” ’ ]

Is there a tour of total length at most D that visits all n cities?
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NP-complete problems we’ve discussed

3SAT — Independent-Set — Clique
)
Vertex-Cover — 01-Programming — Integer-Programming

\)

Set-Cover

—> 3Color

L—> Subset-Sum

[ Hamiltonian-Cycle — DecisionTSP

L———> Hamiltonian-Path
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Some intermediate problems

Problems reducible to NP problems not known to be polytime:

Basis for the security of current cryptography:
* Factoring: Given an integer N in binary, find its prime factorization.

* Discrete logarithm: Given prime p in binary, and g and x modulo p.
Find y such that x = g”(mod p) if it exists.

. &(nl/3) ..
Best algorithms known are Zg(w time.

Other famous ones:
* Graph Isomorphism: Given graphs G and H, can they be relabelled to be the same?
Best algorithm now 1n2(1°8°%) (recently improved from 2807 time.

* Nash equilibrium: Given a multiplayer game, find randomized strategies for each
player so that no player could do better by deviating.
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What to do if the problem you want to solve is NP-hard

15t thing to try:

* You might have phrased your problem too generally
* e.g., In practice, the graphs that actually arise are far from arbitrary

 Maybe they have some special characteristic that allows you to solve the
problem in your special case

* For example the Independent-Set problem is easy on “interval graphs”
» Exactly the case for the Interval Scheduling problem!
» Search the literature to see if special cases already solved
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What to do if the problem you want to solve is NP-hard

2"d thing to try if your problem is a minimization or maximization problem

* Try to find @ polynomial-time worst-caseapproximation algorithm
\

e For a minimization problem

* Find a solution with value < K times the optimum

* For a maximization problem
* Find a solution with value = 1 /K times the optimum

Want K to be as close to 1 as possible.
R
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Greedy Approximation for Vertex-Cover

On input G = (V,E)

W« Q@ This actually a better approximation

p factor than the greedy algorithm that
E'<E repeatedly chooses the highest degree
while E' # @ vertex remaining that you considered

on Homework 3.
select anye = (u,v) € E’

W< WuU{uv}
E' < E"\ {edges e € E' that touch u or v}

Claim: At most a factor 2 larger than the optimal vertex-cover size.

Proof: Edges selected don’t share any vertices so any vertex-cover must choose
at least one of u or v each time.
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Set-Cover

Find smallest
collection of sets
containing every point
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Set-Cover

Find smallest
collection of sets

containing every point Set cover size 4
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Set-Cover Greedy Set Cover: Repeatedly choose the set

that covers the most # of new elements

Find smallest
collection of sets
containing every point
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Set-Cover Greedy Set Cover: Repeatedly choose the set

that covers the most # of new elements

Find smallest
collection of sets
containing every point
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Set-Cover Greedy Set Cover: Repeatedly choose the set

that covers the most # of new elements

Find smallest
collection of sets
containing every point
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Set-Cover Greedy Set Cover: Repeatedly choose the set

that covers the most # of new elements

Find smallest
collection of sets
containing every point

Theorem: Greedy finds best cover up to a factor of In n.
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Greedy Set Cover: Repeatedly choose the set
that maximizes # new elements covered
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Greedy Set Cover: Repeatedly choose the set
that maximizes # new elements covered
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Greedy Set Cover: Repeatedly choose the set
that maximizes # new elements covered
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Greedy Set Cover: Repeatedly choose the set
that maximizes # new elements covered
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Greedy Set Cover: Repeatedly choose the set
that maximizes # new elements covered

( )
)
Q0 (0|~

—

\_ J

\_

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING



Greedy Set Cover: Repeatedly choose the set
that maximizes # new elements covered

( )
)

Greedy solution:
5 sets

—

N y ~ log,n sets

Greedy solution:

\ J U _J

- J
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Greedy Set Cover: Repeatedly choose the set
that maximizes # new elements covered

Optimal:
2 sets
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Greedy Approximation to Set-Cover g

'
Theorem: If there is a set cover of size k then the greedy set cover has s

size < k In n.

Proof: Suppose that there is a set cover of si

At each step all elements remaining are covered by these k sets.

So always a set available covering = 1 /k fraction of remaining elts.
= L/ K 1re

) 1 )
So # of uncovered elts after i sets < (1 — ;) X # after i — 1 sets.

———

1 t
TotaIaftertsetsSn(l—E) <n@ =1 fort=klnn. R
—_— ~ ‘/’__,’/
/

1—-x<e*forx>0

ef\((,g /]\ €X>/ Nl \’&
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Travelling-Salesperson Problem (TSP)

Travelling-Salesperson Problem (TSP):

Given: a set of n cities v, ..., V,, and distance function d that gives distance
d(v;, vj) between each pair of cities

Find the shortest tour that visits all n cities.

MetricTSP:

The distance function d satisfies the triangle inequality:
dlu,w) <d(u,v)+d(v,w)

Proper tour: visit each city exactly once.
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Minimum Spanning Tree Approximation: Factor of 2
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TSP: Minimum Spanning Tree Factor 2 Approximation

Euler Tour of doubled MST:

Euler tour covers each edge twice

Any tour contains a spanning tree
so MST(G) < TOUR p7(G)

So TOUR 51 (G) = 2 MST(G) < 2 TOUR ypr(G)

This visits each node more than once, so not a proper tour.
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Why did this work?

* We found an Euler tour on a graph that used the edges of the
original graph (possibly repeated).

* The weight of the tour was the total weight of the new graph.

* Suppose now
» All edges possible
* Weights satisfy the triangle inequality (MetricTSP)
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MetricTSP: Minimum Spanning Tree Factor 2 Approximation

Euler Tour of doubled MST:

®
/ \ Euler tour covers each edge twice
. @ _
® V.,_‘.':/ ® SO TOURMST(G) =2 MST(G)
.\.‘o |
V1la *— Any tour contains a spanning tree
© ®  SOMST(G) < TOURypr(G)
/:.-; 1 L
®
./ SOoTOURysr(G) =2 MST(G) < 2TOURp7(G)
AN
®

Instead: take shortcut to next unvisited vertex on the Euler tour
By triangle inequality this can only be shorter.
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MetricTSP: Minimum Spanning Tree Factor 2 Approximation

Euler tour covers each edge twice

Any tour contains a spanning tree
so MST(G) < TOUR p7(G)

Instead: take shortcut to next unvisited vertex on the Euler tour
By triangle inequality this can only be shorter.
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MetricTSP: Minimum Spanning Tree Factor 2 Approximation

Final: ® _
/ \ Euler tour covers each edge twice
®
/ ®

)
\‘ |
‘\‘ Any tour contains a Spanning tree
® L SO MST(G) < TOUROPT(G)
[ .-
o So TOURy57(G) = 2 MST(G) < 2 TOUR ypy(G)
AN
®

Instead: take shortcut to next unvisited vertex on the Euler tour
By triangle inequality this can only be shorter.
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Christofides Algorithm: A factor 3/2 approximation

Any subgraph of the weighted complete graph that has an Euler Tour will work also!
Fact: To have an Euler Tour it suffices to have all degrees even.

Christofides Algorithm:
e Computean MSTT
* Find the set O of odd-degree vertices in T

* Add a minimum-weight perfect matching® M on the vertices in O to T to make every vertex
have even degree

e T are an even number of odd-degree vertices!

e Usean EulerTour Ein T U M and then shortcut as before

Theorem: Cost(E) < 1.5 TOURypr

*Requires finding optimal matchings in general graphs, not just bipartite ones
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Christofides Approximation

N
~ '|

| ‘\‘ Any tour contains a spanning tree
[
\. We just need to show that the matching M

has cost(M) < TOURypr/2
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Christofides Approximation

Any tour costs at least the cost of two matchings M; and M, on O

Tour

2 cost(M) < cost(My) + cost(M,) < TOURypr
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Christofides Approximation Final Tour
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®
Ne Total cost(E) < 3TOURypr/2
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Max-3SAT Approximation

Max-3SAT: Given a 3CNF formula F find a truth assignment that satisfies
the maximum possible # of clauses of F.

Observation: A single clause on 3 variables only rules out 1/8 of the possible truth
assignments since each literal has to be false to be ruled out.

= a random truth assignment will satisfy the clause with probability 7/8.

So in expectation, if F has m clauses, a random assignment satisfies 7m /8 of them.

A greedy algorithm can achieve this: Choose most frequent literal appearing in
clauses that are not yet satisfied and set it to true.

If P = NP no better approximation is possible
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Knapsack Problem

Each item has a value v; and a weight w;.

Maximize );csv; with );cow; < W.

Theorem: For any € > 0 there is an algorithm that produces a solution
within (1 + &) factor of optimal for the Knapsack problem with running

time 0(n?/&?)
“Polynomial-Time Approximation Scheme” or PTAS

Algorithm: Maintain the high order bits in the dynamic programming
solution.
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Hardness of Approximation

Polynomial-time approximation algorithms for NP-hard optimization problems
can sometimes be ruled out unless P = NP.

Easy example:

Coloring: Given agraph G = (V, E) find the smallest k such that G has a
k-coloring.
Because 3-coloring is NP-hard, no approximation ratio better than 4 /3 is possible unless P = NP

because you would have to be able to figure out if a 3-colorable graph can be colored in < 4
colors. i.e. if it can be 3-colored.

* We now know a huge amount about the hardness of approximating
NP optimization problems if P = NP.

* Approximation factors are very different even for closely related problems like
Vertex-Cover and Independent-Set.
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Approximation Algorithms/Hardness of Approximation

Research has classified many problems based on what kinds of polytime
approximations are possible if P = NP

* Best: (1 + &) factor for any £ > 0. ((PTAS)

some scheduling problems, TSP in plane

* Some fixed constant factor > 1. e.g. 2,3/2,8/7,100
* Vertex Cover, Max-3SAT, MetricTSP, other scheduling problems

—_—

« Exact best factors or very close upper/lower bounds known for many problems.
* O(logn) factor
* Set Cover, Graph Partitioning problems
/\

ph Tartitionin:
« Worst: Q(n'¢) factor for every € > 0.

* Clique, Independent-Set, Coloring
— — —
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