CSE 421 Introduction to Algorithms

Lecture 26: Dealing with NP-completeness: Approximation Algorithms

Some other NP-complete examples you should know

Hamiltonian-Cycle: Given a directed graph $G=(V, E)$. Is there a cycle in G that visits each vertex in V exactly once?

Hamiltonian-Path: Given a directed graph $G=(\boldsymbol{V}, \boldsymbol{E})$. Is there a path p in G of length $n \mathbf{- 1}$ that visits each vertex in V exactly once?

Same problems are also NP-complete for undirected graphs

Note: If we asked about visiting each edge exactly once instead of each vertex, the corresponding problems are called Euler Tour, Eulerian-Path and are polynomial-time solvable.

Travelling-Salesperson Problem (TSP)

Travelling-Salesperson Problem (TSP):

Given: a set of n cities v_{1}, \ldots, v_{n} and distance function d that gives distance $d\left(v_{i}, v_{j}\right)$ between each pair of cities
Find the shortest tour that visits all \boldsymbol{n} cities.

DecisionTSP:

$$
\begin{aligned}
& \text { Ham cycle } \leq \text { Deciuntirp } \\
& d\left(v_{i}, v_{j}\right)<1 \\
& d\left(v_{i}, v_{j}\right)=2 \text { ash }
\end{aligned}
$$

Given: a set of n cities v_{1}, \ldots, v_{n} and distance function d that gives distance $d\left(v_{i}, v_{j}\right)$ between each pair of cities and a distance D

$$
D=|N|
$$

Is there a tour of total length at most \boldsymbol{D} that visits all n cities?

NP-complete problems we've discussed

3SAT \rightarrow Independent-Set \rightarrow Clique


```
        \downarrow
    Vertex-Cover }->\mathrm{ 01-Programming }->\mathrm{ Integer-Programming
        \downarrow
```

 Set-Cover
 3Color
 Subset-Sum
 Hamiltonian-Cycle \(\rightarrow\) DecisionTSP
 Hamiltonian-Path

Some intermediate problems

Problems reducible to NP problems not known to be polytime:
Basis for the security of current cryptography:

- Factoring: Given an integer N in binary, find its prime factorization.
- Discrete logarithm: Given prime p in binary, and g and x modulo p.

Find y such that $x \equiv g^{y}(\bmod p)$ if it exists.
Best algorithms known are $2^{\widetilde{\Theta}\left(n^{1 / 3}\right)}$ time.
Other famous ones:

- Graph Isomorphism: Given graphs G and \boldsymbol{H}, can they be relabelled to be the same? Best algorithm now $n^{\Theta\left(\log ^{2} n\right)}$ (recently improved from $2^{\widetilde{\Theta}\left(n^{1 / 2}\right)}$) time.
- Nash equilibrium: Given a multiplayer game, find randomized strategies for each player so that no player could do better by deviating.

What to do if the problem you want to solve is NP-hard

$1^{\text {st }}$ thing to try:

- You might have phrased your problem too generally
- e.g., In practice, the graphs that actually arise are far from arbitrary
- Maybe they have some special characteristic that allows you to solve the problem in your special case
- For example the Independent-Set problem is easy on "interval graphs"
- Exactly the case for the Interval Scheduling problem!
- Search the literature to see if special cases already solved

What to do if the problem you want to solve is NP-hard

$2^{\text {nd }}$ thing to try if your problem is a minimization or maximization problem

- Try to find a polynomial-time worst-case approximation algorithm
- For a minimization problem
- Find a solution with value $\leq K$ times the optimum
- For a maximization problem
- Find a solution with value $\geq 1 / K$ times the optimum

Want K to be as close to 1 as possible.

Greedy Approximation for Vertex-Cover

```
On input \(G=(V, E)\)
\(W \leftarrow \emptyset\)
\(\boldsymbol{E}^{\prime} \leftarrow E\)
while \(E^{\prime} \neq \varnothing\)
    select any \(e=(u, v) \in E^{\prime}\)
    \(\boldsymbol{W} \leftarrow \boldsymbol{W} \cup\{\boldsymbol{u}, \boldsymbol{v}\}\)
    \(E^{\prime} \leftarrow E^{\prime} \backslash\left\{\right.\) edges \(e \in E^{\prime}\) that touch \(\boldsymbol{u}\) or \(\left.\boldsymbol{v}\right\}\)
```

This actually a better approximation factor than the greedy algorithm that repeatedly chooses the highest degree vertex remaining that you considered on Homework 3.

Claim: At most a factor 2 larger than the optimal vertex-cover size.
Proof: Edges selected don't share any vertices so any vertex-cover must choose at least one of u or v each time.

Set-Cover

Set-Cover

Find smallest collection of sets containing every point

Set cover size 4

Set-Cover

Greedy Set Cover: Repeatedly choose the set that covers the most \# of new elements

Find smallest collection of sets containing every point

Set-Cover

Greedy Set Cover: Repeatedly choose the set that covers the most \# of new elements

Find smallest collection of sets containing every point

Set-Cover

Greedy Set Cover: Repeatedly choose the set that covers the most \# of new elements

Find smallest collection of sets containing every point

Set-Cover

Greedy Set Cover: Repeatedly choose the set that covers the most \# of new elements

Find smallest collection of sets containing every point

Theorem: Greedy finds best cover up to a factor of $\ln \boldsymbol{n}$.

Greedy Set Cover: Repeatedly choose the set that maximizes \# new elements covered

Greedy Set Cover: Repeatedly choose the set that maximizes \# new elements covered

Greedy Set Cover: Repeatedly choose the set that maximizes \# new elements covered

Greedy Set Cover: Repeatedly choose the set that maximizes \# new elements covered

Greedy Set Cover: Repeatedly choose the set that maximizes \# new elements covered

Greedy Set Cover: Repeatedly choose the set that maximizes \# new elements covered

Greedy Set Cover: Repeatedly choose the set that maximizes \# new elements covered

Optimal:
2 sets

Greedy Approximation to Set-Cover

Theorem: If there is a set cover of size \boldsymbol{k} then the greedy set cover has size $\leq \boldsymbol{k} \ln \boldsymbol{n}$.

Proof: Suppose that there is a set cover of size \boldsymbol{k}.
At each step all elements remaining are covered by these \boldsymbol{k} sets.
So always a set available covering $\geqq \mathbb{1} / \boldsymbol{k}$ fraction of remaining elts.
So \# of uncovered elts after i sets $\leq\left(1-\frac{1}{k}\right) \times \#$ after $i-1$ sets.
Total after t sets $\leq \frac{n\left(1-\frac{1}{k}\right)^{t}<n \sqrt{e^{-t / / y}}=1}{\sqrt{1-x<e^{-x}} \text { for } x>0}$ for $t=k \ln n$.

Travelling-Salesperson Problem (TSP)

Travelling-Salesperson Problem (TSP):

Given: a set of n cities v_{1}, \ldots, v_{n} and distance function d that gives distance $d\left(v_{i}, v_{j}\right)$ between each pair of cities
Find the shortest tour that visits all \boldsymbol{n} cities.

MetricTSP:

The distance function d satisfies the triangle inequality:

$$
d(u, w) \leq d(u, v)+d(v, w)
$$

Proper tour: visit each city exactly once.

Minimum Spanning Tree Approximation: Factor of 2

TSP: Minimum Spanning Tree Factor 2 Approximation

Euler Tour of doubled MST:

Euler tour covers each edge twice so $\operatorname{TOUR}_{M S T}(G)=2 \operatorname{MST}(G)$

Any tour contains a spanning tree so $\operatorname{MST}(G) \leq \operatorname{TOUR}_{O P T}(G)$

$$
\text { So TOUR } R_{M S T}(G)=2 \operatorname{MST}(G) \leq 2 \operatorname{TOUR}_{O P T}(G)
$$

This visits each node more than once, so not a proper tour.

Why did this work?

- We found an Euler tour on a graph that used the edges of the original graph (possibly repeated).
- The weight of the tour was the total weight of the new graph.
- Suppose now
- All edges possible
- Weights satisfy the triangle inequality (MetricTSP)

MetricTSP: Minimum Spanning Tree Factor 2 Approximation

Euler Tour of doubled MST:

Instead: take shortcut to next unvisited vertex on the Euler tour By triangle inequality this can only be shorter.

MetricTSP: Minimum Spanning Tree Factor 2 Approximation

Instead: take shortcut to next unvisited vertex on the Euler tour By triangle inequality this can only be shorter.

MetricTSP: Minimum Spanning Tree Factor 2 Approximation

Final:

Instead: take shortcut to next unvisited vertex on the Euler tour By triangle inequality this can only be shorter.

Christofides Algorithm: A factor 3/2 approximation

Any subgraph of the weighted complete graph that has an Euler Tour will work also!
Fact: To have an Euler Tour it suffices to have all degrees even.
Christofides Algorithm:

- Compute an MST T
- Find the set O of odd-degree vertices in T
- Add a minimum-weight perfect matching* M on the vertices in O to T to make every vertex have even degree
- There are an even number of odd-degree vertices!
- Use an Euler Tour \bar{E} in $T \cup M$ and then shortcut as before

Theorem: $\operatorname{Cost}(E) \leq 1.5 \operatorname{TOUR}_{O P T}$
*Requires finding optimal matchings in general graphs, not just bipartite ones

Christofides Approximation

Christofides Approximation

Any tour costs at least the cost of two matchings M_{1} and M_{2} on 0

$$
2 \operatorname{cost}(M) \leq \operatorname{cost}\left(M_{1}\right)+\operatorname{cost}\left(M_{2}\right) \leq T O U R_{O P T}
$$

Christofides Approximation Final Tour

Max-3SAT Approximation

Max-3SAT: Given a 3CNF formula F find a truth assignment that satisfies the maximum possible \# of clauses of \boldsymbol{F}.

Observation: A single clause on 3 variables only rules out $1 / 8$ of the possible truth assignments since each literal has to be false to be ruled out.
\Rightarrow a random truth assignment will satisfy the clause with probability $7 / 8$.
So in expectation, if F has m clauses, a random assignment satisfies $7 m / 8$ of them.
A greedy algorithm can achieve this: Choose most frequent literal appearing in clauses that are not yet satisfied and set it to true.
If $\mathbf{P} \neq \mathbf{N P}$ no better approximation is possible

Knapsack Problem

Each item has a value v_{i} and a weight w_{i}.
Maximize $\sum_{i \in S} v_{i}$ with $\sum_{i \in S} w_{i} \leq W$.
Theorem: For any $\varepsilon>0$ there is an algorithm that produces a solution within $(1+\varepsilon)$ factor of optimal for the Knapsack problem with running time $O\left(n^{2} / \varepsilon^{2}\right)$
"Polynomial-Time Approximation Scheme" or PTAS

Algorithm: Maintain the high order bits in the dynamic programming solution.

Hardness of Approximation

Polynomial-time approximation algorithms for NP-hard optimization problems can sometimes be ruled out unless $\mathbf{P}=\mathbf{N P}$.

Easy example:
Coloring: Given a graph $G=(\boldsymbol{V}, \boldsymbol{E})$ find the smallest \boldsymbol{k} such that \boldsymbol{G} has a k-coloring.

Because 3-coloring is NP-hard, no approximation ratio better than $4 / 3$ is possible unless $P=N P$ because you would have to be able to figure out if a 3-colorable graph can be colored in <4 colors. i.e. if it can be 3-colored.

- We now know a huge amount about the hardness of approximating NP optimization problems if $P \neq N P$.
- Approximation factors are very different even for closely related problems like Vertex-Cover and Independent-Set.

Approximation Algorithms/Hardness of Approximation

Research has classified many problems based on what kinds of polytime approximations are possible if $\mathbf{P} \neq \mathbf{N P}$

- Best: $(1+\varepsilon)$ factor for any $\varepsilon>0$. (PTAS)
- packing and some scheduling problems, TSP in plane
- Some fixed constant factor $>$ 1. e.g. 2, 3/2, 8/7, 100
- Vertex Cover, Max-3SAT, MetricTSP, other scheduling problems
- Exact best factors or very close upper/lower bounds known for many problems.
- $\Theta(\log \boldsymbol{n})$ factor
- Set Cover, Graph Partitioning problems
- Worst: $\Omega\left(\boldsymbol{n}^{\mathbf{1}-\varepsilon}\right)$ factor for every $\varepsilon>\mathbf{0}$.
- Clique, Independent-Set, Coloring

