CSE 421
Introduction to Algorithms

Lecture 25: More NP-completeness




NP-hardness & NP-completeness

Notion of hardness we can prove that is useful unless P = NP:

Defn: Problem B is NP-hard iff every problem A € NP satisfies A <p B.

This means that B is at least as hard as every problem in NP. NP-hard

Defn: Problem B is NP-complete iff 1
e Be NP and NP-complete
* Bis NP-hard.

This means that B is a hardest problem in NP.
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Extent and Impact of NP-Completeness

Extent of NP-completeness. [Papadimitriou 1995]
* 6,000 citations per year (title, abstract, keywords).
* more than "compiler"”, "operating system", "database"
* Broad applicability and classification power.

» "Captures vast domains of computational, scientific,
mathematical endeavors, and seems to roughly delimit what
mathematicians and scientists had been aspiring to compute
feasibly."

NP-completeness can guide scientific inquiry.
e 1926: Ising introduces simple model for phase transitions.
e 1944: Onsager solves 2D case in tour de force.
e 19xx: Feynman and other top minds seek 3D solution.
e 2000: Istrail proves 3D problem NP-complete.
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Cook-Levin Theorem and implications

Theorem [Cook 1971, Levin 1973]: 3SAT is NP-complete
Proof: See CSE 431.

Corollary: If 3SAT <p B then B is NP-hard.

By the same kind of reasoning we have
Theorem: If A <p B for some NP-hard A then B is NP-hard.
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NP-complete problems so far

So far:
3SAT — Independent-Set — Clique
l

Vertex-Cover — 01-Programming — Integer-Programming
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Steps to Proving Problem B is NP-complete

e Show B isin NP
e State what the hint/certificate is.
e Argue that it is polynomial-time to check.

e Show B is NP-hard:
 State: “Reduction is from NP-hard Problem A”
« Show what the reduction function f is.
e Argue that f is polynomial time.
* Argue correctness in two directions:
* x aYES for Aimplies f(x) is a YES for B

* Do this by showing how to convert a certificate for x being YES for A to a certificate
for f(x) being a YES for B.

* f(x) aVYES for B implies x is a YES for A

* ... by converting certificates for f(x) to certificates for x
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Reduction from a Special Case to a General Case

Set-Cover:

Given a set U (universe) of m elements, a collection §4, ..., S,, of subsets of U,
and an integer k

Is there a sub-collection (the cover) of < k sets whose union is equal to U?

Theorem: Set-Cover is NP-complete
Proof:

1. Set-Coverisin NP:

a) CertificateisasetT C {1, ..., n} defining a supposed cover.

b) Verifier outputs YES if |[T| < k and U;cr S; = U; otherwise, answer NO.
This computation is clearly polynomial-time
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Set-Cover is NP-complete

Proof (continued):

2. Set-Cover is NP-hard

Claim: Vertex-Cover <p Set-Cover

a) Reduction function f takes and input a graph G = (V, E) and integer k and produces a
universe U, sets S4, ..., S,, € U and integer k' as follows:
« U =E (goodidea since the objects being covered in Vertex-Cover are edges.)
e WriteV = {v,, ..., v,}.
Foreachi =1, ...,n define §; to be the set of edges in E that v; touches.
s k' =k.
b) Clearly function f is polynomial time to compute.

c) Correctness (=): Suppose that graph G has a vertex cover W of size < k.
DefinethesetT = {i | v; € W}. Then |T| = |W| < k.
Also since W is a vertex cover, U;cp S; = {e € E | some v; € W touchese } = E = U.
Therefore U has set cover T from S, ..., S,, of size < k.
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Set-Cover is NP-complete

Proof (continued):
2. Set-Cover is NP-hard
Claim: Vertex-Cover <p Set-Cover

a)

b)
d)

Reduction function f takes and input a graph G = (V, E) and integer k and produces a
universe U, sets S4, ..., S,, € U and integer k' as follows:

« U =E (goodidea since the objects being covered in Vertex-Cover are edges.)
e WriteV = {v,, ..., v,}.
Foreachi =1, ...,n define §; to be the set of edges in E that v; touches.
s k' =k.
) ..

Correctness (<): Suppose that U has a set cover T from S, ..., S,, of size < k.
Definetheset W = {v; | i € T}. Then |W| = |T| < k.

Also since T is a vertex cover, U = E = U;cpS; = Ujerl e € E | v; touches e }. But this s
thesame as E = U eyl e € E | vtouches e}, sograph G has vertex cover W ofsize< k. W
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Recall: Graph Colorability

Defn: A undirected graph G = (V, E) is k-colorable iff
we can assign one of k colors to each vertex of V s.t.

for every edge (u, v) has different colored endpoints, y(u) # y(v).
“edges are not monochromatic”

Theorem: 3Color is NP-complete
Proof:
1. 3Colorisin NP:

* We already showed this; the certificate was the coloring.
2. 3Coloris NP-hard:

Claim: 3SAT<p3Color

We need to find a function f that maps a 3CNF formula F to a graph G s.t.
F is satisfiable © G is 3-colorable.
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3SAT <p 3Color

Start with a base triangle with vertices T, F, and O.
We can assume that T, F, and O are the three colors used.

e Intuition: T and F will stand for true and false; O will stand for other.

To represent the properties of the 3CNF formula F we will need both a
Boolean variable part and a clause part.

O

/\

F T

Base Triangle
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3SAT <p 3Color

Boolean variable part:

* For each Boolean variable add a
triangle with two nodes labelled
by literals as shown.

e Since both nodes are joined to
node O and to each other, they
must have opposite colors T and
F in any 3-coloring.

* So, any 3-coloring corresponds to
a unique truth assignment.

Base Triangle
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3SAT <p 3Color %

2 C L,
<L
>
..I-.
y </
X2
X o Clause part:

For each clause of F add a
gadget consisting of a
» triangle and 3 “outer” nodes.

e Join each outer nodeto a
corresponding literal node

L]
e,
......
e,
"a

.
ea,
"y

e JoineachouternodetoT

Clause Part
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3SAT <p 3Color %
L

Clearly only
polynomial-time
to produce.

Clause Part
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3SAT <p 3Color %

Key property:

In any 3-coloring: -1 Xy

outer nodes either F or O

inner triangle must use O

Clause Part
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< Color outer vertices G
35AT —P 3Co|or with F for 15t true O =2,
Suppose F is satisfiable. literal and the rest O. °L

Color variable part
using satisfying
assignment.

Color inner vertices
with O opposite F.

Therefore G is 3-colorable
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3SAT SP 3Color Coloring must have : CZ;?

outer F opposite each

Suppose G is 3-colorable. inner O.

Literal joined to
each outer F must
be colored T.

3-coloring must use O
Each clause has a literal that is T satisfying F 0 on each inner triangle
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More NP-completeness

Subset-Sum: (Decision version of Knapsack)
Given: n integers wy, ..., w,, and integer W
Is there a subset of the n input integers that adds up to exactly W?

O (nW) solution from dynamic programming but if W and each w; can be n bits long
then this is exponential time.

Theorem: Subset-Sum is NP-complete
Proof:

1. Subset-Sum isin NP:

a) Certificate is n bits representing a subset S of {1, ..., n}.
b) Checkthat};cqw; = W.

2. Subset-Sum is NP-hard
Claim: 3SAT<pSubset-Sum
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3SAT<pSubset-Sum

Given a 3-CNF formula F with m clauses and n variables

* We will create an input for Subset-Sum with 2m + 2n numbers thatare m + n
digits long.

* We will ensure that no matter how we sum them there won’t be any carries so
each digit in the target W will force a separate constraint.

* Instead of calling them wy, ..., W5, 2., We will use mnemonic names:
* Two numbers for each variable x;
e t;and f; (corresponding to x; being true or x; being false)
* Two extra numbers for each clause (;
° a; and b]- (two identical filler numbers to handle number of false literals
in clause C})

* We define them by giving their decimal representation...
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3SATSPSU bset-Sum Ci = (x1V XV X3)

i j C; = (—x1 VX2V X5)
1 23 4 .n 12 3 4 . m Cs = (—X3V Xy V X7)
ty= 10 00 .. 01 000 .1
C4_ = (—|x1 VvV X3 VvV xg)
Boolean variable part: fr==1000..00101. 0
First n digit positions t= 0 1 0 0 .. 0 0 1 0 0 .. O Cn = (X1 V 2Xg V X22)
ce):zugftthg: ;>_<ai\sctly fa= 0100 ..01000 .0 (gaucepart:
. N tz= 0010 .. 0100 0 .. 0 Three1l’sineachdigitpositionj
included in any subset . .
. f3= 00 10 ..00O0 11 . 0 correspondingto the literals
summing to W.
that would make clause C; true.
a;= 0 0 0 O 01 0 0 0 .. 0 Twoextral’sonecanchoosein
b= 0 0 0 0 0100 0 . o e€achclausepositiontoaddupto
ay= 00 0 0 00100 . 0 3 and match W |.n f:ase.there are
fewer than 3 satisfied literals per
b= 0 0 0 O 0O 0100 ..0

clause with satisfied assignment.

w= 1111 .13 333 . 3
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3SAT<pSubset-Sum

i J
1 23 4 .n 12 3 4 . m

tt7= 1000 ..01000 .1 If some subset sums to W must
If F satisfiable choose Jf1= 1 0 0 0 .. 0 0 1 0 1 .. 0  haveexactlyoneoft;or f; for
oneof t; or f; tz= 0100 .00100 . 0 eachi
depending on the f,= 0100 ..01000 . 0 Set variable x; to true if t; used and
satisfying assignment. ts= 0010 ..01000 ..0 false if f; used. o
Their sum will have Must have three 1’s in each clause
exactly one 1 in each f3= 0010 ..00011.0 digit column j since things sum to
of the first n digits and w.
atleastone linevery a;= 0 0 0 0 01000 . 0  Atmosttwoofthesecancome

igi iti f a; b;t fth 1’ t
clause digit position. by= 0 0 0 0 01000 .. 0 rom f, j t;) onsc? eiih stml:;
' come from the choices of the tru
Also include none, az= 0000 . 00100 . 0 . .
one, or both of each assignment which means that every
a;, bj pair to add to W. b= 0000 00100 ..0 clause C; is satisfied so F is
satisfiable.
w= 1111 .13 3 3 3 . 3 |
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Some other NP-complete examples you should know

Hamiltonian-Cycle: Given a directed graph G = (V, E). Is there a cyclein G
that visits each vertex in V exactly once?

Hamiltonian-Path: Given a directed graph G = (V, E). Is there a path p in
G of length n — 1 that visits each vertex in VV exactly once?

Same problems are also NP-complete for undirected graphs

Note: If we asked about visiting each edge exactly once instead of each
vertex, the corresponding problems are called Eulerian-Cycle, Eulerian-Path
and are polynomial-time solvable.
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Travelling-Salesperson Problem (TSP)

Travelling-Salesperson Problem (TSP):

Given: a set of n cities v, ..., V,, and distance function d that gives distance
d(v;, v;j) between each pair of cities

What is the length of the shortest tour that visits all n cities?

DecisionTSP:

Given: a set of n cities v4, ..., V,, and distance function d that gives distance
d(v;, v;) between each pair of cities and a distance D

Is there a tour of total length at most D that visits all n cities?
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Hamiltonian-Cycle <p DecisionTSP

Define the reduction given G = (V, E):
* Vertices V = {v4, ..., v,,} become cities

1 if (v, v;) €EE

* Define d(vi» ”i) - {2 if not

* Distance D = |V/|.

Claim: There is a Hamiltonian cycle in G & there is a tour of length |V|
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NP-complete problems we’ve covered

3SAT — Independent-Set — Clique
)
Vertex-Cover — 01-Programming — Integer-Programming

)

Set-Cover

—> 3Color

L——> Subset-Sum

[ Hamiltonian-Cycle — DecisionTSP

L———> Hamiltonian-Path
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More Hard Computational Problems

* Aerospace engineering: optimal mesh partitioning for finite elements.
Biology: protein folding.

Chemical engineering: heat exchanger network synthesis.

Civil engineering: equilibrium of urban traffic flow.

* Economics: computation of arbitrage in financial markets with friction.
Electrical engineering: VLSI layout.

* Environmental engineering: optimal placement of contaminant sensors.
Financial engineering: find minimum risk portfolio of given return.
Game theory: find Nash equilibrium that maximizes social welfare.

* Genomics: phylogeny reconstruction.

Mechanical engineering: structure of turbulence in sheared flows.
Medicine: reconstructing 3-D shape from biplane angiocardiogram.

* Operations research: optimal resource allocation.

Physics: partition function of 3-D Ising model in statistical mechanics.
Politics: Shapley-Shubik voting power.

Pop culture: Minesweeper consistency.

Statistics: optimal experimental design.
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