CSE 421 Introduction to Algorithms

Lecture 25: More NP-completeness

NP-hardness \& NP-completeness

Notion of hardness we can prove that is useful unless $\mathbf{P}=\mathbf{N P}$:

Defn: Problem \boldsymbol{B} is NP-hard iff every problem $\boldsymbol{A} \in \mathrm{NP}$ satisfies $\boldsymbol{A} \leq_{P} \boldsymbol{B}$.
This means that \boldsymbol{B} is at least as hard as every problem in NP.

Defn: Problem B is NP-complete iff

- $B \in \mathbf{N P}$ and
- B is NP-hard.

This means that B is a hardest problem in NP.

$A \leq_{P} B$.

Extent and Impact of NP-Completeness

Extent of NP-completeness. [Papadimitriou 1995]

- 6,000 citations per year (title, abstract, keywords).
- more than "compiler", "operating system", "database"
- Broad applicability and classification power.
- "Captures vast domains of computational, scientific, mathematical endeavors, and seems to roughly delimit what mathematicians and scientists had been aspiring to compute feasibly."

NP-completeness can guide scientific inquiry.

- 1926: Ising introduces simple model for phase transitions.
- 1944: Onsager solves 2D case in tour de force.
- 19xx: Feynman and other top minds seek 3D solution.
- 2000: Istrail proves 3D problem NP-complete.

Cook-Levin Theorem and implications

Theorem [Cook 1971, Levin 1973]: 3SAT is NP-complete
Proof: See CSE 431.

Corollary: If 3 SAT \leq_{P} B then B is NP-hard.

By the same kind of reasoning we have
Theorem: If $\mathrm{A} \leq_{P}$ B for some NP-hard A then B is NP-hard.

NP-complete problems so far

So far:
3SAT \rightarrow Independent-Set \rightarrow Clique \downarrow

Vertex-Cover \rightarrow 01-Programming \rightarrow Integer-Programming

Steps to Proving Problem B is NP-complete

- Show B is in NP
- State what the hint/certificate is.
- Argue that it is polynomial-time to check.
- Show B is NP-hard:
- State: "Reduction is from NP-hard Problem A"
- Show what the reduction function f is.
- Argue that f is polynomial time.
- Argue correctness in two directions:
- x a YES for A implies $f(x)$ is a YES for B
- Do this by showing how to convert a certificate for x being YES for A to a certificate for $f(x)$ being a YES for \boldsymbol{B}.
- $f(x)$ a YES for B implies x is a YES for A
- ... by converting certificates for $f(x)$ to certificates for x

Reduction from a Special Case to a General Case

Set-Cover:

Given a set U (universe) of m elements, a collection S_{1}, \ldots, S_{n} of subsets of U, and an integer \boldsymbol{k}
Is there a sub-collection (the cover) of $\leq \boldsymbol{k}$ sets whose union is equal to \boldsymbol{U} ?

Theorem: Set-Cover is NP-complete
Proof:

1. Set-Cover is in NP:
a) Certificate is a set $T \subseteq\{\mathbf{1}, \ldots, n\}$ defining a supposed cover.
b) Verifier outputs YES if $|T| \leq k$ and $\cup_{i \in T} S_{i}=U$; otherwise, answer NO.

This computation is clearly polynomial-time

Set-Cover is NP-complete

Proof (continued):

2. Set-Cover is NP-hard

Claim: Vertex-Cover \leq_{P} Set-Cover

a) Reduction function f takes and input a graph $G=(V, E)$ and integer k and produces a universe U, sets $S_{1}, \ldots, S_{n} \subseteq U$ and integer k^{\prime} as follows:

- $U=E$ (good idea since the objects being covered in Vertex-Cover are edges.)
- Write $V=\left\{v_{1}, \ldots, v_{n}\right\}$.

For each $i=1, \ldots, n$ define S_{i} to be the set of edges in E that v_{i} touches.

- $\boldsymbol{k}^{\prime}=\boldsymbol{k}$.
b) Clearly function f is polynomial time to compute.
c) Correctness (\Rightarrow) : Suppose that graph G has a vertex cover W of size $\leq \boldsymbol{k}$.

Define the set $T=\left\{i \mid v_{i} \in W\right\}$. Then $|T|=|W| \leq \boldsymbol{k}$.
Also since W is a vertex cover, $\bigcup_{i \in T} S_{i}=\left\{e \in E \mid\right.$ some $v_{i} \in W$ touches $\left.e\right\}=E=U$.
Therefore U has set cover T from S_{1}, \ldots, S_{n} of size $\leq \boldsymbol{k}$.

Set-Cover is NP-complete

Proof (continued):

2. Set-Cover is NP-hard

Claim: Vertex-Cover \leq_{P} Set-Cover

a) Reduction function f takes and input a graph $G=(V, E)$ and integer k and produces a universe U, sets $S_{1}, \ldots, S_{n} \subseteq U$ and integer k^{\prime} as follows:

- $U=E$ (good idea since the objects being covered in Vertex-Cover are edges.)
- Write $V=\left\{v_{1}, \ldots, v_{n}\right\}$.

For each $i=1, \ldots, n$ define S_{i} to be the set of edges in E that v_{i} touches.

- $\boldsymbol{k}^{\prime}=\boldsymbol{k}$.
b) c) ...
d) Correctness (\in): Suppose that U has a set cover T from S_{1}, \ldots, S_{n} of size $\leq \boldsymbol{k}$.

Define the set $W=\left\{v_{i} \mid i \in T\right\}$. Then $|W|=|T| \leq k$.
Also since T is a vertex cover, $U=E=\bigcup_{i \in T} S_{i}=\cup_{i \in T}\left\{e \in E \mid v_{i}\right.$ touches $\left.e\right\}$. But this is the same as $E=\cup_{v \in W}\{\boldsymbol{e} \in E \mid v$ touches $\boldsymbol{e}\}$, so graph G has vertex cover W of size $\leq \boldsymbol{k}$.

Recall: Graph Colorability

Defn: A undirected graph $G=(\boldsymbol{V}, \boldsymbol{E})$ is \boldsymbol{k}-colorable iff we can assign one of k colors to each vertex of V s.t. for every edge $(\boldsymbol{u}, \boldsymbol{v})$ has different colored endpoints, $\chi(\boldsymbol{u}) \neq \chi(v)$. "edges are not monochromatic"

Theorem: 3Color is NP-complete
Proof:

1. 3Color is in NP:

- We already showed this; the certificate was the coloring.

2. 3Color is NP-hard:

Claim: 3 SAT $\leq_{P} 3$ Color
We need to find a function f that maps a 3CNF formula F to a graph G s.t.
F is satisfiable $\Leftrightarrow \boldsymbol{G}$ is 3-colorable.

3SAT \leq_{P} 3Color

Start with a base triangle with vertices T, F, and O .
We can assume that T, F, and O are the three colors used.

- Intuition: T and F will stand for true and false; \mathbf{O} will stand for other.

To represent the properties of the 3CNF formula F we will need both a Boolean variable part and a clause part.

Base Triangle

3SAT \leq_{P} 3Color

Boolean variable part:

- For each Boolean variable add a triangle with two nodes labelled by literals as shown.
- Since both nodes are joined to node O and to each other, they must have opposite colors T and F in any 3 -coloring.
- So, any 3-coloring corresponds to a unique truth assignment.

Base Triangle

3SAT \leq_{P} 3Color

Clause Part

3SAT \leq_{P} 3Color

Clearly only polynomial-time to produce.

Clause Part

3SAT \leq_{P} 3Color

3 SAT \leq_{P} 3Color

Suppose F is satisfiable.

Color variable part
using satisfying
assignment.

Color outer vertices with F for $1^{\text {st }}$ true literal and the rest 0 .

Color variable part using satisfying assignment.

Therefore G is 3 -colorable

Color inner vertices with O opposite F.

3SAT \leq_{P} 3Color

Suppose G is 3 -colorable.
Literal joined to each outer F must be colored T .

Each clause has a literal that is T satisfying F

More NP-completeness

Subset-Sum: (Decision version of Knapsack)
Given: \boldsymbol{n} integers w_{1}, \ldots, w_{n} and integer W
Is there a subset of the \boldsymbol{n} input integers that adds up to exactly W ?
$\boldsymbol{O}(n W)$ solution from dynamic programming but if W and each w_{i} can be n bits long then this is exponential time.

Theorem: Subset-Sum is NP-complete

Proof:

1. Subset-Sum is in NP:
a) Certificate is \boldsymbol{n} bits representing a subset S of $\{\mathbf{1}, \ldots, \boldsymbol{n}\}$.
b) Check that $\sum_{i \in S} w_{i}=W$.
2. Subset-Sum is NP-hard

Claim: 3SAT \leq_{P} Subset-Sum

3SAT \leq_{P} Subset-Sum

Given a 3-CNF formula \boldsymbol{F} with m clauses and n variables

- We will create an input for Subset-Sum with $2 m+2 n$ numbers that are $m+n$ digits long.
- We will ensure that no matter how we sum them there won't be any carries so each digit in the target W will force a separate constraint.
- Instead of calling them $w_{1}, \ldots, w_{2 n+2 m}$ we will use mnemonic names:
- Two numbers for each variable x_{i}
- t_{i} and f_{i} (corresponding to x_{i} being true or x_{i} being false)
- Two extra numbers for each clause C_{j}
- a_{j} and b_{j} (two identical filler numbers to handle number of false literals in clause C_{j})
- We define them by giving their decimal representation...

3SAT \leq_{P} Subset-Sum

Boolean variable part: First \boldsymbol{n} digit positions ensure that exactly one of t_{i} or f_{i} is included in any subset summing to W.

	1	2	3	4	\ldots	n	1	2	3	4	\ldots	m
$\boldsymbol{t}_{1}=$	1	0	0	0	\ldots	0	1	0	0	0	\ldots	1
$\boldsymbol{f}_{1}=$	1	0	0	0	\ldots	0	0	1	0	1	\ldots	0
$\boldsymbol{t}_{2}=$	0	1	0	0	\ldots	0	0	1	0	0	\ldots	0
$f_{2}=$	0	1	0	0	\ldots	0	1	0	0	0	\ldots	0
$t_{3}=$	0	0	1	0	\ldots	0	1	0	0	0	\ldots	0
$f_{3}=$	0	0	1	0	\ldots	0	0	0	1	1	\ldots	0
\ldots	\ldots.	\ldots	\ldots.	\ldots	\ldots	\ldots						
$a_{1}=$	0	0	0	0	\ldots	0	1	0	0	0	\ldots	0
$b_{1}=$	0	0	0	0	\ldots	0	1	0	0	0	\ldots	0
$a_{2}=$	0	0	0	0	\ldots	0	0	1	0	0	\ldots.	0
$b_{2}=$	0	0	0	0	\ldots	0	0	1	0	0	\ldots.	0
\ldots	\ldots.	\ldots										
$W=$	1	1	1	1	\ldots	1	3	3	3	3	\ldots.	3

$$
\begin{aligned}
C_{1} & =\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \\
C_{2} & =\left(\neg x_{1} \vee x_{2} \vee x_{5}\right) \\
C_{3} & =\left(\neg x_{3} \vee x_{4} \vee x_{7}\right) \\
C_{4} & =\left(\neg x_{1} \vee \neg x_{3} \vee x_{9}\right) \\
& \ldots \\
C_{m} & =\left(x_{1} \vee \neg x_{8} \vee x_{22}\right)
\end{aligned}
$$

Clause part:

Three 1's in each digit position j corresponding to the literals that would make clause C_{j} true. Two extra 1's one can choose in each clause position to add up to 3 and match W in case there are fewer than 3 satisfied literals per clause with satisfied assignment.

3SAT \leq_{P} Subset-Sum

Some other NP-complete examples you should know

Hamiltonian-Cycle: Given a directed graph $G=(V, E)$. Is there a cycle in G that visits each vertex in V exactly once?

Hamiltonian-Path: Given a directed graph $G=(V, E)$. Is there a path p in G of length $n \mathbf{- 1}$ that visits each vertex in V exactly once?

Same problems are also NP-complete for undirected graphs

Note: If we asked about visiting each edge exactly once instead of each vertex, the corresponding problems are called Eulerian-Cycle, Eulerian-Path and are polynomial-time solvable.

Travelling-Salesperson Problem (TSP)

Travelling-Salesperson Problem (TSP):

Given: a set of n cities v_{1}, \ldots, v_{n} and distance function d that gives distance $d\left(v_{i}, v_{j}\right)$ between each pair of cities
What is the length of the shortest tour that visits all n cities?

DecisionTSP:

Given: a set of n cities v_{1}, \ldots, v_{n} and distance function d that gives distance $d\left(v_{i}, v_{j}\right)$ between each pair of cities and a distance D

Is there a tour of total length at most \boldsymbol{D} that visits all \boldsymbol{n} cities?

Hamiltonian-Cycle \leq_{P} DecisionTSP

Define the reduction given $G=(\boldsymbol{V}, \boldsymbol{E})$:

- Vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}$ become cities
- Define $d\left(v_{i}, v_{j}\right)=\left\{\begin{array}{cc}1 & \text { if }\left(v_{i}, v_{j}\right) \in E \\ 2 & \text { if not }\end{array}\right.$
- Distance $\boldsymbol{D}=|\boldsymbol{V}|$.

Claim: There is a Hamiltonian cycle in $G \Leftrightarrow$ there is a tour of length $|V|$

NP-complete problems we've covered

3SAT \rightarrow Independent-Set \rightarrow Clique


```
        \downarrow
    Vertex-Cover }->\mathrm{ 01-Programming }->\mathrm{ Integer-Programming
```

 \(\downarrow\)
 Set-Cover
 3Color
 Subset-Sum
 Hamiltonian-Cycle \(\rightarrow\) DecisionTSP
 Hamiltonian-Path

More Hard Computational Problems

- Aerospace engineering: optimal mesh partitioning for finite elements.
- Biology: protein folding.
- Chemical engineering: heat exchanger network synthesis.
- Civil engineering: equilibrium of urban traffic flow.
- Economics: computation of arbitrage in financial markets with friction.
- Electrical engineering: VLSI layout.
- Environmental engineering: optimal placement of contaminant sensors.
- Financial engineering: find minimum risk portfolio of given return.
- Game theory: find Nash equilibrium that maximizes social welfare.
- Genomics: phylogeny reconstruction.
- Mechanical engineering: structure of turbulence in sheared flows.
- Medicine: reconstructing 3-D shape from biplane angiocardiogram.
- Operations research: optimal resource allocation.
- Physics: partition function of 3-D Ising model in statistical mechanics.
- Politics: Shapley-Shubik voting power.
- Pop culture: Minesweeper consistency.
- Statistics: optimal experimental design.

