Lecture 25: More NP-completeness
NP-hardness & NP-completeness

Notion of hardness we can prove that is useful unless \(P = NP \):

Defn: Problem \(B \) is \textbf{NP-hard} iff every problem \(A \in NP \) satisfies \(A \leq_P B \).

This means that \(B \) is at least as hard as every problem in \(NP \).

Defn: Problem \(B \) is \textbf{NP-complete} iff

- \(B \in NP \) and
- \(B \) is \textbf{NP-hard}.

This means that \(B \) is a hardest problem in \(NP \).
Extent and Impact of NP-Completeness

Extent of NP-completeness. [Papadimitriou 1995]
- 6,000 citations per year (title, abstract, keywords).
 - more than "compiler", "operating system", "database"
- Broad applicability and classification power.
- "Captures vast domains of computational, scientific, mathematical endeavors, and seems to roughly delimit what mathematicians and scientists had been aspiring to compute feasibly."

NP-completeness can guide scientific inquiry.
- 1926: Ising introduces simple model for phase transitions.
- 1944: Onsager solves 2D case in tour de force.
- 19xx: Feynman and other top minds seek 3D solution.
Cook-Levin Theorem and implications

Theorem [Cook 1971, Levin 1973]: \(3\text{SAT}\) is \(\text{NP}\)-complete

Proof: See CSE 431.

Corollary: If \(3\text{SAT} \leq_p B\) then \(B\) is \(\text{NP}\)-hard.

By the same kind of reasoning we have

Theorem: If \(A \leq_p B\) for some \(\text{NP}\)-hard \(A\) then \(B\) is \(\text{NP}\)-hard.
NP-complete problems so far

So far:

3SAT \rightarrow Independent-Set \rightarrow Clique

↓

Vertex-Cover \rightarrow 01-Programming \rightarrow Integer-Programming
Steps to Proving Problem B is NP-complete

• Show B is in NP
 • State what the hint/certificate is.
 • Argue that it is polynomial-time to check.

• Show B is NP-hard:
 • State: “Reduction is from NP-hard Problem A”
 • Show what the reduction function f is.
 • Argue that f is polynomial time.
 • Argue correctness in two directions:
 • x a YES for A implies $f(x)$ is a YES for B
 • Do this by showing how to convert a certificate for x being YES for A to a certificate for $f(x)$ being a YES for B.
 • $f(x)$ a YES for B implies x is a YES for A
 • ... by converting certificates for $f(x)$ to certificates for x
Reduction from a Special Case to a General Case

Set-Cover:

Given a set U (universe) of m elements, a collection S_1, \ldots, S_n of subsets of U, and an integer k

Is there a sub-collection (the cover) of $\leq k$ sets whose union is equal to U?

Theorem: Set-Cover is NP-complete

Proof:

1. Set-Cover is in NP:
 a) Certificate is a set $T \subseteq \{1, \ldots, n\}$ defining a supposed cover.
 b) Verifier outputs YES if $|T| \leq k$ and $\bigcup_{i \in T} S_i = U$; otherwise, answer NO.
 This computation is clearly polynomial-time
Set-Cover is NP-complete

Proof (continued):

2. Set-Cover is NP-hard

Claim: Vertex-Cover \leq_P Set-Cover

a) Reduction function f takes and input a graph $G = (V, E)$ and integer k and produces a universe U, sets $S_1, ..., S_n \subseteq U$ and integer k' as follows:

- $U = E$ (good idea since the objects being covered in Vertex-Cover are edges.)
- Write $V = \{v_1, ..., v_n\}$. For each $i = 1, ..., n$ define S_i to be the set of edges in E that v_i touches.
- $k' = k$.

b) Clearly function f is polynomial time to compute.

c) Correctness (\Rightarrow): Suppose that graph G has a vertex cover W of size $\leq k$. Define the set $T = \{i \mid v_i \in W\}$. Then $|T| = |W| \leq k$. Also since W is a vertex cover, $\bigcup_{i \in T} S_i = \{e \in E \mid \text{some } v_i \in W \text{ touches } e\} = E = U$. Therefore U has set cover T from $S_1, ..., S_n$ of size $\leq k$.
Set-Cover is NP-complete

Proof (continued):

2. Set-Cover is **NP-hard**

 Claim: Vertex-Cover \leq_p Set-Cover

 a) Reduction function f takes and input a graph $G = (V, E)$ and integer k and produces a universe U, sets $S_1, ..., S_n \subseteq U$ and integer k' as follows:

 - $U = E$ (good idea since the objects being covered in Vertex-Cover are edges.)

 - Write $V = \{v_1, ..., v_n\}$.

 For each $i = 1, ..., n$ define S_i to be the set of edges in E that v_i touches.

 - $k' = k$.

 b) c) ...

 d) Correctness (\Leftarrow): Suppose that U has a set cover T from $S_1, ..., S_n$ of size $\leq k$.

 Define the set $W = \{v_i | i \in T\}$. Then $|W| = |T| \leq k$.

 Also since T is a vertex cover, $U = E = \bigcup_{i \in T} S_i = \bigcup_{i \in T} \{ e \in E | v_i \text{ touches } e \}$. But this is the same as $E = \bigcup_{v \in W} \{ e \in E | v \text{ touches } e \}$, so graph G has vertex cover W of size $\leq k$.

[QM]
Recall: Graph Colorability

Defn: A undirected graph $G = (V, E)$ is k-colorable iff we can assign one of k colors to each vertex of V s.t. for every edge (u, v) has different colored endpoints, $\chi(u) \neq \chi(v)$. “edges are not monochromatic”

Theorem: 3Color is NP-complete

Proof:

1. **3Color** is in NP:
 - We already showed this; the certificate was the coloring.

2. **3Color** is NP-hard:

 Claim: $3SAT \leq_p 3Color$

 We need to find a function f that maps a 3CNF formula F to a graph G s.t. F is satisfiable $\Leftrightarrow G$ is 3-colorable.
3SAT \leq_p 3Color

Start with a base triangle with vertices T, F, and O.
We can assume that T, F, and O are the three colors used.
• Intuition: T and F will stand for true and false; O will stand for other.

To represent the properties of the 3CNF formula F we will need both a Boolean variable part and a clause part.
3SAT \leq_p 3Color

Boolean variable part:
- For each Boolean variable add a triangle with two nodes labelled by literals as shown.

- Since both nodes are joined to node O and to each other, they must have opposite colors T and F in any 3-coloring.

- So, any 3-coloring corresponds to a unique truth assignment.
3SAT \leq_p 3Color

Clause part:
For each clause of F add a gadget consisting of a triangle and 3 “outer” nodes.
- Join each outer node to a corresponding literal node
- Join each outer node to T
3SAT \leq_p 3Color

Clearly only polynomial-time to produce.

Clause Part
3SAT \leq_p 3Color

Key property:
In any 3-coloring:
outer nodes either F or O
inner triangle must use O
3SAT \leq_p 3Color

Suppose F is satisfiable.

Color variable part using satisfying assignment.

Color outer vertices with F for 1st true literal and the rest O.

Color inner vertices with O opposite F.

Therefore G is 3-colorable.
3SAT \leq_p 3Color

Suppose G is 3-colorable.

Literal joined to each outer F must be colored T.

Each clause has a literal that is T satisfying F.

Coloring must have outer F opposite each inner O.

3-coloring must use O on each inner triangle.
More NP-completeness

Subset-Sum: (Decision version of Knapsack)

Given: n integers w_1, \ldots, w_n and integer W
Is there a subset of the n input integers that adds up to exactly W?

$O(nW)$ solution from dynamic programming but if W and each w_i can be n bits long then this is exponential time.

Theorem: Subset-Sum is NP-complete

Proof:

1. Subset-Sum is in NP:
 a) Certificate is n bits representing a subset S of $\{1, \ldots, n\}$.
 b) Check that $\sum_{i \in S} w_i = W$.

2. Subset-Sum is NP-hard

 Claim: $3\text{SAT} \leq_p \text{Subset-Sum}$
3SAT \leq_p Subset-Sum

Given a 3-CNF formula F with m clauses and n variables

- We will create an input for Subset-Sum with $2m + 2n$ numbers that are $m + n$ digits long.
- We will ensure that no matter how we sum them there won’t be any carries so each digit in the target W will force a separate constraint.
- Instead of calling them w_1, \ldots, w_{2n+2m} we will use mnemonic names:
 - Two numbers for each variable x_i
 - t_i and f_i (corresponding to x_i being true or x_i being false)
 - Two extra numbers for each clause C_j
 - a_j and b_j (two identical filler numbers to handle number of false literals in clause C_j)
- We define them by giving their decimal representation...
\[3SAT \leq_p Subset-Sum\]

| \(i \) | 1 | 2 | 3 | 4 | ... | \(n \) | 1 | 2 | 3 | 4 | ... | \(m \) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| \(t_1 \) = | 1 | 0 | 0 | 0 | ... | 0 | 1 | 0 | 0 | 0 | ... | 1 |
| \(f_1 \) = | 1 | 0 | 0 | 0 | ... | 0 | 0 | 1 | 0 | 1 | ... | 0 |
| \(t_2 \) = | 0 | 1 | 0 | 0 | ... | 0 | 0 | 1 | 0 | 0 | ... | 0 |
| \(f_2 \) = | 0 | 1 | 0 | 0 | ... | 0 | 1 | 0 | 0 | 0 | ... | 0 |
| \(t_3 \) = | 0 | 0 | 1 | 0 | ... | 0 | 1 | 0 | 0 | 0 | ... | 0 |
| \(f_3 \) = | 0 | 0 | 1 | 0 | ... | 0 | 0 | 0 | 1 | 1 | ... | 0 |
| \(a_1 \) = | 0 | 0 | 0 | 0 | ... | 0 | 1 | 0 | 0 | 0 | ... | 0 |
| \(b_1 \) = | 0 | 0 | 0 | 0 | ... | 0 | 1 | 0 | 0 | 0 | ... | 0 |
| \(a_2 \) = | 0 | 0 | 0 | 0 | ... | 0 | 0 | 1 | 0 | 0 | ... | 0 |
| \(b_2 \) = | 0 | 0 | 0 | 0 | ... | 0 | 0 | 1 | 0 | 0 | ... | 0 |

Boolean variable part:
First \(n \) digit positions ensure that exactly one of \(t_i \) or \(f_i \) is included in any subset summing to \(W \).

Clause part:
Three 1’s in each digit position \(j \) corresponding to the literals that would make clause \(C_j \) true.

Two extra 1’s one can choose in each clause position to add up to 3 and match \(W \) in case there are fewer than 3 satisfied literals per clause with satisfied assignment.

\[
C_1 = (x_1 \lor \neg x_2 \lor x_3) \\
C_2 = (\neg x_1 \lor x_2 \lor x_5) \\
C_3 = (\neg x_3 \lor x_4 \lor x_7) \\
C_4 = (\neg x_1 \lor \neg x_3 \lor x_9) \\
\vdots \\
C_m = (x_1 \lor \neg x_8 \lor x_{22})
\]

\[
W = 1 \\ 1 \\ 1 \\ 1 \\ \ldots \\ 1 \\ 3 \\ 3 \\ 3 \\ 3 \\ \ldots \\ 3
\]
3SAT ≤ₚ Subset-Sum

If F satisfiable choose one of t_i or f_i depending on the satisfying assignment. Their sum will have exactly one 1 in each of the first n digits and at least one 1 in every clause digit position. Also include none, one, or both of each a_j, b_j pair to add to W.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>...</th>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>...</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1 =</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>1</td>
</tr>
<tr>
<td>f_1 =</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>t_2 =</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>f_2 =</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>t_3 =</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>f_3 =</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>a_1 =</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>b_1 =</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>a_2 =</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>b_2 =</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

If some subset sums to W must have exactly one of t_i or f_i for each i.

Set variable x_i to true if t_i used and false if f_i used.

Must have three 1’s in each clause digit column j since things sum to W.

At most two of these can come from a_j, b_j to one of these 1’s must come from the choices of the truth assignment which means that every clause C_j is satisfied so F is satisfiable.
Some other NP-complete examples you should know

Hamiltonian-Cycle: Given a directed graph $G = (V, E)$. Is there a cycle in G that visits each vertex in V exactly once?

Hamiltonian-Path: Given a directed graph $G = (V, E)$. Is there a path p in G of length $n - 1$ that visits each vertex in V exactly once?

Same problems are also NP-complete for undirected graphs

Note: If we asked about visiting each edge exactly once instead of each vertex, the corresponding problems are called Eulerian-Cycle, Eulerian-Path and are polynomial-time solvable.
Travelling-Salesperson Problem (TSP):

Given: a set of \(n \) cities \(v_1, \ldots, v_n \) and distance function \(d \) that gives distance \(d(v_i, v_j) \) between each pair of cities.

What is the length of the shortest tour that visits all \(n \) cities?

DecisionTSP:

Given: a set of \(n \) cities \(v_1, \ldots, v_n \) and distance function \(d \) that gives distance \(d(v_i, v_j) \) between each pair of cities and a distance \(D \).

Is there a tour of total length at most \(D \) that visits all \(n \) cities?
Hamiltonian-Cycle \leq_p DecisionTSP

Define the reduction given $G = (V, E)$:

- Vertices $V = \{v_1, \ldots, v_n\}$ become cities
- Define $d(v_i, v_j) = \begin{cases} 1 & \text{if } (v_i, v_j) \in E \\ 2 & \text{if not} \end{cases}$
- Distance $D = |V|$.

Claim: There is a Hamiltonian cycle in $G \iff$ there is a tour of length $|V|$
NP-complete problems we’ve covered

3SAT → Independent-Set → Clique
 ↓
 Vertex-Cover → 01-Programming → Integer-Programming
 ↓
 Set-Cover
 → 3Color
 → Subset-Sum
 → Hamiltonian-Cycle → DecisionTSP
 → Hamiltonian-Path
More Hard Computational Problems

- Aerospace engineering: optimal mesh partitioning for finite elements.
- Biology: protein folding.
- Chemical engineering: heat exchanger network synthesis.
- Civil engineering: equilibrium of urban traffic flow.
- Economics: computation of arbitrage in financial markets with friction.
- Electrical engineering: VLSI layout.
- Environmental engineering: optimal placement of contaminant sensors.
- Financial engineering: find minimum risk portfolio of given return.
- Game theory: find Nash equilibrium that maximizes social welfare.
- Genomics: phylogeny reconstruction.
- Mechanical engineering: structure of turbulence in sheared flows.
- Medicine: reconstructing 3-D shape from biplane angiocardiogram.
- Operations research: optimal resource allocation.
- Physics: partition function of 3-D Ising model in statistical mechanics.
- Politics: Shapley-Shubik voting power.
- Pop culture: Minesweeper consistency.
- Statistics: optimal experimental design.