CSE 421 Introduction to Algorithms

Lecture 24: P, NP, NP-completeness

Polynomial time

Defn: Let \mathbf{P} (polynomial-time) be the set of all decision problems solvable by algorithms whose worst-case running time is bounded by some polynomial in the input size.

This is the class of decision problems whose solutions we have called "efficient".

Last time: Polynomial Time Reduction

Defn: We write $A \leq_{P} B$ iff there is an algorithm for A using a 'black box' (subroutine or method) that solves B that

- uses only a polynomial number of steps, and
- makes only a polynomial number of calls to a method for \boldsymbol{B}.

Theorem: If $\boldsymbol{A} \leq_{P} \boldsymbol{B}$ then a poly time algorithm for $\boldsymbol{B} \Rightarrow$ poly time algorithm for \boldsymbol{A}
Proof: Not only is the number of calls polynomial but the size of the inputs on which the calls are made is polynomial!

Corollary: If you can prove there is no fast algorithm for A, then that proves there is no fast algorithm for \boldsymbol{B}.

Intuition for " $A \leq_{P} B$ ": "B is at least as hard* as A " "up to polynomial-time slop.

Polynomial Time Reduction

Defn: We write $\boldsymbol{A} \leq_{P} \boldsymbol{B}$ iff there is an algorithm for \boldsymbol{A} using a 'black box' (subroutine or method) that solves B that

- uses only a polynomial number of steps, and
- makes only a polynomial number of calls to a method for \boldsymbol{B}.

Theorem: If $A \leq_{P} B$ then $B \in \mathbf{P} \Rightarrow A \in \mathbf{P}$
Proof: Not only is the number of calls polynomial but the size of the inputs on which the calls are made is polynomial!

Corollary: If $A \leq_{P} B$ then $A \notin \mathbf{P} \Rightarrow B \notin \mathbf{P}$.

Theorem: If $A \leq_{P} B$ and $B \leq_{P} C$ then $A \leq_{P} C$
Proof: Compose the reductions: Plug in "the algorithm for B that uses C " in place of B.

A Special Kind of Polynomial-Time Reduction

We will often use a restricted form of $A \leq_{P} B$ often called a Karp or many-one reduction...

Defn: $A \leq_{P}^{1} B$ iff there is an algorithm for A given a black box solving B that on input x that

- Runs for polynomial time computing $y=f(x)$
- Makes 1 call to the black box for B on input y
- Returns the answer that the black box gave

We say that the function f is the reduction.

Reminder: The terminology for reductions...

We read " $A \leq_{P} B$ " as " A is polynomial-time reducible to B " or
" \boldsymbol{A} can be reduced to \boldsymbol{B} in polynomial time"

- It means "we can solve A using at most a polynomial amount of work on top of solving B."
- But word reducible seems to go in the opposite direction of the $\leq \operatorname{sign}$.

Last time: Some reductions

Theorem: Independent-Set \leq_{P} Clique

Theorem: Clique \leq_{P} Independent-Set

Reminder: Reduction steps

4 steps for reducing (decision problem) A to problem B

1. Describe the reduction itself

- i.e., the function f that converts the input \boldsymbol{x} for A to the one for problem B.

2. Make sure the running time to compute f is polynomial

- In lecture, we'll sometimes skip writing out this step.

3. Argue that if the correct answer to the instance x for A is YES, then the instance $\boldsymbol{f}(\boldsymbol{x})$ we produced is a YES instance for \boldsymbol{B}.
4. Argue that if the instance $\boldsymbol{f}(\boldsymbol{x})$ we produced is a YES instance for \boldsymbol{B} then the correct answer to the instance x for A is YES.

Another Reduction

Vertex-Cover:

Given a graph $G=(\boldsymbol{V}, \boldsymbol{E})$ and an integer \boldsymbol{k}
Is there a $W \subseteq V$ with $|W| \leq \boldsymbol{k}$ such that every edge of G has an endpoint in W ? (\boldsymbol{W} is a vertex cover, a set of vertices that covers \boldsymbol{E}.)
i.e., Is there a set of at most \boldsymbol{k} vertices that touches all edges of G ?

Claim: Independent-Set \leq_{P} Vertex-Cover

Lemma: In a graph $G=(V, E)$ and $U \subseteq V$
\boldsymbol{U} is an independent set $\Leftrightarrow \boldsymbol{V}-\boldsymbol{U}$ is a vertex cover

Reduction Idea

Lemma: In a graph $G=(\boldsymbol{V}, \boldsymbol{E})$ and $U \subseteq V$
\boldsymbol{U} is an independent set $\Leftrightarrow \boldsymbol{V}-\boldsymbol{U}$ is a vertex cover
Proof:
(\Rightarrow) Let U be an independent set in G Then for every edge $e \in E$,
U contains at most one endpoint of e
So, at least one endpoint of e must be in $V-U$
So, $V-U$ is a vertex cover
(\Leftarrow) Let $W=\boldsymbol{V}-\boldsymbol{U}$ be a vertex cover of G
Then U does not contain both endpoints of any edge

U (else W would miss that edge)
So \boldsymbol{U} is an independent set

Reduction for Independent-Set \leq_{P} Vertex-Cover

- Map ($\boldsymbol{G}, \boldsymbol{k}$) to ($\boldsymbol{G}, \boldsymbol{n}-\boldsymbol{k}$)
- Previous lemma proves correctness
- Clearly polynomial time
- Just as for Clique, we also can show
- Vertex-Cover \leq_{P} Independent-Set
- $\operatorname{Map}(\boldsymbol{G}, \boldsymbol{k})$ to $(\boldsymbol{G}, \boldsymbol{n}-\boldsymbol{k})$

Recall: Vertex-Cover as LP

Given: Undirected graph $G=(\boldsymbol{V}, \boldsymbol{E})$
Q: Is there a set of at most \boldsymbol{k} vertices touching all edges of G ?

Doesn't work: To define a set we need

$$
\boldsymbol{x}_{v}=\mathbf{0} \text { or } \boldsymbol{x}_{v}=\mathbf{1}
$$

Natural Variables for LP:

x_{v} for each $v \in V$

Does this have a solution?

$$
\begin{aligned}
& \sum_{v} \boldsymbol{x}_{\boldsymbol{v}} \leq \boldsymbol{k} \\
& \mathbf{0} \leq \boldsymbol{x}_{\boldsymbol{v}} \leq \mathbf{1} \text { for each node } \boldsymbol{v} \in \boldsymbol{V} \\
& \boldsymbol{x}_{\boldsymbol{u}}+\boldsymbol{x}_{\boldsymbol{v}} \geq \mathbf{1} \text { for each edge }\{\boldsymbol{u}, \boldsymbol{v}\} \in \boldsymbol{E}
\end{aligned}
$$

LP minimum $=3$
Vertex Cover minimum $=4$

Integer-Programming, 01-Programming

Integer-Programming (ILP): Exactly like Linear Programming but with the extra constraint that the solutions must be integers. Decision version:

Given: (integer) matrix A and (integer) vector b Is there an integer solution to $A \boldsymbol{x} \leq \boldsymbol{b}$ and $x \geq 0$?

01-Programming:
Given: (integer) matrix A and (integer) vector b
Is there an solution to $A \boldsymbol{x} \leq \boldsymbol{b}$ with $x \in\{\mathbf{0}, \mathbf{1}\}$?

Then we have Vertex-Cover \leq_{P} 01-Programming \leq_{P} Integer-Programming

Beyond P?

Independent-Set, Clique, Vertex-Cover, 01-Programming, Integer-Programming and 3Color are examples of natural and practically important problems for which we don't know any polynomial-time algorithms.

There are many others such as...
DecisionTSP:
Given a weighted graph G and an integer \boldsymbol{k}, Is there a tour that visits all vertices in G having total weight at most k ?
and...

Satisfiability

- Boolean variables x_{1}, \ldots, x_{n}
- taking values in $\{\mathbf{0}, \mathbf{1}\}$. $\mathbf{0}=$ false, $\mathbf{1}=$ true
- Literals
- x_{i} or $\neg x_{i}$ for $\boldsymbol{i}=1, \ldots, n .\left(\neg x_{i}\right.$ also written as $\left.\overline{x_{i}}.\right)$
- Clause
- a logical OR of one or more literals
- e.g. $\left(x_{1} \vee \neg x_{3} \vee x_{7} \vee x_{12}\right)$
- CNF formula
- a logical AND of a bunch of clauses
- \boldsymbol{k}-CNF formula
- All clauses have exactly k variables

Satisfiability

CNF formula example:

$$
\left(x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{4} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{1} \vee x_{3}\right)
$$

Defn: If there is some assignment of 0's and 1's to the variables that makes it true then we say the formula is satisfiable

- $\left(x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{4} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{1} \vee x_{3}\right)$ is satisfiable: $x_{1}=x_{3}=1$
- $x_{1} \wedge\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{3}$ is not satisfiable.

3SAT: Given a CNF formula F with exactly 3 variables per clause, is F satisfiable?

Common property of these problems

- There is a special piece of information, a short certificate or proof, that allows you to efficiently verify (in polynomial-time) that the YES answer is correct. This certificate might be very hard to find.
- 3Color: the coloring.
- Independent-Set, Clique: the set U of vertices
- Vertex-Cover: the set W of vertices
- 01-Programming, Integer-Programming: the solution x
- Decision-TSP: the tour
- 3SAT: a truth assignment that makes the CNF formula F true.

The complexity class NP

NP consists of all decision problems where

- You can verify the YES answers efficiently (in polynomial time) given a short (polynomial-size) certificate
and
- No fake certificate can fool your polynomial time verifier into saying YES for a NO instance

More precise definition of NP

A decision problem A is in NP iff there is

- a polynomial time procedure VerifyA(.,.) and
- a polynomial p
s.t.
- for every input x that is a YES for A there is a string t with $|t| \leq p(|x|)$ with $\operatorname{VerifyA}(x, t)=$ YES
and
- for every input x that is a NO for A there does not exist a string t with $|t| \leq p(|x|)$ with VerifyA $(x, t)=$ YES
- A string t on which VerifyA $(x, t)=$ YES is called a certificate for x or a proof that x is a YES input

Verifying the certificate is efficient

3Color: the coloring

- Check that each vertex has one of only 3 colors and check that the endpoints of every edge have different colors
Independent-Set, Clique: the set U of vertices
- Check that $|\boldsymbol{U}| \geq \boldsymbol{k}$ and either no (IS) or all (Clique) edges on present on U Vertex-Cover: the set W of vertices
- Check that $|W| \leq \boldsymbol{k}$ and W touches every edge.

01-Programming, Integer-Programming: the solution x

- Check type of x; plug in x and see that it satisfies all the inequalities.

Decision-TSP: the tour

- Check that tour touches each vertex and has total weight $\leq \boldsymbol{k}$.
- 3-SAT: a truth assignment α that makes the CNF formula F true.
- Evaluate F on the truth assignment α.

Keys to showing that a problem is in NP

1. Must be decision probem (YES/NO)
2. For every given YES input, is there a certificate (i.e., a hint) that would help?

- OK if some inputs don't need a certificate

3. For any given NO input, is there a fake certificate that would trick you?
4. You need a polynomial-time algorithm to be able to tell the difference.

Another NP problem

Sudoku:

- Is there a solution where this square has value 4?
- Certificate = full filled in table
- Easy to check

9			5					
6	2		7			5		
		5				6		7
		6			4			
2				3			9	
	8						1	
4								8
7			1	8		4		
7							2	

Fact: All NP problems could be solved efficiently by solving any of the problems on the previous slide efficiently or even by doing it for a general $n^{2} \times \boldsymbol{n}^{2}$ version of Sudoku!

Solving NP problems without hints

There is an obvious algorithm for all NP problems:

Brute force:

Try all possible certificates and check each one using the verifier to see if it works.

Even though the certificates are short, this is exponential time

- 2^{n} truth assignments for n variables
- $\binom{\boldsymbol{n}}{\boldsymbol{k}}$ possible \boldsymbol{k}-element subsets of \boldsymbol{n} vertices
- \boldsymbol{n} ! possible TSP tours of \boldsymbol{n} vertices
- etc.

What We Know

- Every problem in NP is in exponential time
- Every problem in \mathbf{P} is in NP
- You don't need a certificate for problems in P so just ignore any hint you are given
- Nobody knows if all problems in NP can be solved in polynomial time; i.e., does P = NP?
- one of the most important open questions in all of science.
- huge practical implications
- Most CS researchers believe that $\mathbf{P} \neq \mathbf{N P}$
- \$1M prize either way
- but we don't have good ideas for how to prove this ...

NP-hardness \& NP-completeness

Notion of hardness we can prove that is useful unless $\mathbf{P}=\mathbf{N P}$:

Defn: Problem \boldsymbol{B} is NP-hard iff every problem $\boldsymbol{A} \in \mathrm{NP}$ satisfies $\boldsymbol{A} \leq_{P} \boldsymbol{B}$.
This means that \boldsymbol{B} is at least as hard as every problem in NP.

Defn: Problem \boldsymbol{B} is NP-complete iff

- $B \in \mathbf{N P}$ and
- B is NP-hard.

This means that B is a hardest problem in NP.
Not at all obvious that any NP-complete problems exist!

Cook-Levin Theorem

Theorem [Cook 1971, Levin 1973]: 3SAT is NP-complete
Proof: See CSE 431.

Corollary: If 3SAT $\leq_{P} B$ then B is NP-hard.
Proof: Let A be an arbitrary language in NP.
Since 3SAT is NP-hard we have $A \leq_{P}$ 3SAT.
Then $\mathrm{A} \leq_{P} 3$ SAT and 3 SAT $\leq_{P} \mathrm{~B}$ imply that $\mathrm{A} \leq_{P} \mathrm{~B}$.
Therefore every language \mathbf{A} in $\mathbf{N P}$ has $\mathrm{A} \leq_{P} \mathrm{~B}$ so B is NP-hard.

Cook \& Levin did the hard work.

We only need to give one reduction to show that a problem is NP-hard!

Another NP-complete problem: 3 SAT \leq_{P} Independent-Set

1. The reduction:

- Map CNF formula F to a graph G and integer \boldsymbol{k}
- Let $m=\#$ of clauses of F
- Create a vertex in G for each literal occurrence in F
- Join two vertices u, v in G by an edge iff
- \boldsymbol{u} and v correspond to literals in the same clause of \boldsymbol{F} (green edges) or
- u and v correspond to literals x and $\neg x$ (or vice versa) for some variable x (red edges).
- Set $\boldsymbol{k}=\boldsymbol{m}$

2. Clearly polynomial-time computable

Another NP-complete problem: 3 SAT \leq_{P} Independent-Set

$F=\left(x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee \neg x_{4} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{1} \vee x_{3}\right)$

G has both kinds of edges.
The color is just to show why the edges were included.
$\boldsymbol{k}=\boldsymbol{m}$

Correctness (\Rightarrow)

Suppose that \boldsymbol{F} is satisfiable (YES for 3SAT)

- Let α be a satisfying assignment; it satisfies at least one literal in each clause.
- Choose the set U in G to correspond to the first satisfied literal in each clause.
- $|\boldsymbol{U}|=\boldsymbol{m}$
- Since \boldsymbol{U} has $\mathbf{1}$ vertex per clause, no green edges inside \boldsymbol{U}.
- A truth assignment never satisfies both \boldsymbol{x} and $\neg \boldsymbol{x}$, so no red edges inside \boldsymbol{U}.
- Therefore U is an independent set of size \boldsymbol{m}

Therefore ($\boldsymbol{G}, \boldsymbol{m}$) is a YES for Independent-Set.

$$
F=\left(x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee \neg x_{4} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{1} \vee x_{3}\right)
$$

Satisfying assignment α :

$$
\alpha\left(x_{1}\right)=\alpha\left(x_{2}\right)=\alpha\left(x_{3}\right)=\alpha\left(x_{4}\right)=1
$$

Set \boldsymbol{U} marked in purple is independent.

Correctness (\Leftarrow)

Suppose that G has an independent set of size m ($(\boldsymbol{G}, \boldsymbol{m})$ is a YES for Independent-Set)

- Let U be the independent set of size m;
- \boldsymbol{U} must have one vertex per column (green edges)
- Because of red edges, \boldsymbol{U} doesn't have vertex labels with conflicting literals.
- Set all literals labelling vertices in U to true
- This may not be a total assignment but just extend arbitrarily to a total assignment α.
- This assignment satisfies F since it makes at least one literal per clause true.

Therefore \boldsymbol{F} is satisfiable and a YES for 3SAT.

$$
F=\left(x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee \neg x_{4} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{1} \vee x_{3}\right)
$$

Given independent set U of size m
Satisfying assignment α : Part defined by U :

$$
\alpha\left(x_{1}\right)=0, \alpha\left(x_{2}\right)=1, \alpha\left(x_{3}\right)=0
$$

Set $\alpha\left(x_{4}\right)=0$.

Many NP-complete problems

Since 3 SAT \leq_{P} Independent-Set, Independent-Set is NP-hard.
We already showed that Independent-Set is in NP.
\Rightarrow Independent-Set is NP-complete

Corollary: Clique, Vertex-Cover, 01-Programming, and Integer-Programming are also NP-complete.

Proof: We already showed that all are in NP.
We also showed that Independent-Set polytime reduces to all of them.
Combining this with 3 SAT \leq_{P} Independent-Set we get that all are NP-hard.

