CSE 421 Introduction to Algorithms

Lecture 24: P, NP, NP-completeness

Polynomial time

1/ES/ND answer

Defn: Let **P** (polynomial-time) be the set of all decision problems solvable by algorithms whose worst-case running time is bounded by some polynomial in the input size.

This is the class of decision problems whose solutions we have called "efficient".

Last time: Polynomial Time Reduction

Defn: We write $A \leq_P B$ iff there is an algorithm for A using a 'black box' (subroutine or method) that solves B that

- uses only a polynomial number of steps, and
- makes only a polynomial number of calls to a method for B.

Theorem: If $A \leq_P B$ then a poly time algorithm for $B \Rightarrow$ poly time algorithm for A

Proof: Not only is the number of calls polynomial but the size of the inputs on which the calls are made is polynomial!

Corollary: If you can prove there is no fast algorithm for A, then that proves there is no fast algorithm for B.

Intuition for " $A \leq_P B$ ": "B is at least as hard" as A" *up to polynomial-time slop.

Polynomial Time Reduction

 \leq_{ρ}

Defn: We write $A \leq_P B$ iff there is an algorithm for A using a 'black box' (subroutine or method) that solves B that

- uses only a polynomial number of steps, and
- makes only a polynomial number of calls to a method for B.

Theorem: If $A \leq_P B$ then $B \in P \Rightarrow A \in P$

Proof: Not only is the number of calls polynomial but the size of the inputs on which the calls are made is polynomial!

Corollary: If $A \leq_P B$ then $A \notin P \Rightarrow B \notin P$.

Theorem: If $A \leq_P B$ and $B \leq_P C$ then $A \leq_P C$

Proof: Compose the reductions: Plug in "the algorithm for B that uses C" in place of B

Reminder: The terminology for reductions...

We read " $A \leq_P B$ " as "A is polynomial-time reducible to B" or "A can be reduced to B in polynomial time"

- It means "we can solve *A* using at most a polynomial amount of work on top of solving *B*."
- But word reducible seems to go in the opposite direction of the ≤ sign.

Last time: Some reductions

Theorem: Independent-Set \leq_P Clique

Theorem: Clique \leq_P Independent-Set

Reminder: Reduction steps

4 steps for reducing (decision problem) A to problem B

- 1. Describe the reduction itself
 - i.e., the function f that converts the input x for A to the one for problem B.
- 2. Make sure the running time to compute f is polynomial
 - In lecture, we'll sometimes skip writing out this step.
- 3. Argue that if the correct answer to the instance x for A is YES, then the instance f(x) we produced is a YES instance for B.
- 4. Argue that if the instance f(x) we produced is a **YES** instance for **B** then the correct answer to the instance x for **A** is **YES**.

Another Reduction

Vertex-Cover:

```
Given a graph G = (V, E) and an integer k
Is there a W \subseteq V with |W| \leq k such that every edge of G has an endpoint in W? (W is a vertex cover, a set of vertices that covers E.) i.e., Is there a set of at most k vertices that touches all edges of G?
```

Claim: Independent-Set \leq_P Vertex-Cover

```
Lemma: In a graph G = (V, E) and U \subseteq V
U is an independent set \Leftrightarrow V - U is a vertex cover
```

Reduction Idea

Lemma: In a graph G = (V, E) and $U \subseteq V$

U is an independent set $\Leftrightarrow V - U$ is a vertex cover

Proof:

 (\Rightarrow) Let U be an independent set in G

Then for every edge $e \in E$,

U contains at most one endpoint of e

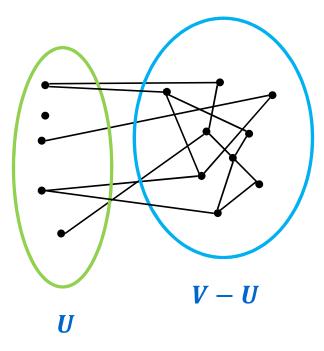
So, at least one endpoint of e must be in V - U

So, V - U is a vertex cover

 (\Leftarrow) Let W = V - U be a vertex cover of G

Then U does not contain both endpoints of any edge (else W would miss that edge)

So *U* is an independent set



Reduction for Independent-Set \leq_P Vertex-Cover

- Map (G, k) to (G, n k)
 Previous lemma proves correctness

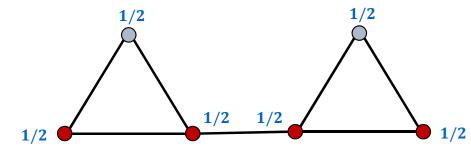
- Clearly polynomial time
 - Just as for Clique, we also can show
 - Vertex-Cover \leq_P Independent-Set
 - Map (G, k) to (G, n k)

Recall: Vertex-Cover as LP

Given: Undirected graph G = (V, E)

Q: Is there a set of at most *k* vertices touching all edges of *G*?

Doesn't work: To define a set we need $x_v = \mathbf{0}$ or $x_v = \mathbf{1}$



Natural Variables for LP:

 x_v for each $v \in V$

Does this have a solution?

$$\sum_{v} x_{v} \leq k$$

$$0 \leq x_{v} \leq 1 \text{ for each node } v \in V$$

$$x_{u} + x_{v} \geq 1 \text{ for each edge } \{u, v\} \in E$$

LP minimum = 3

Vertex Cover minimum = 4

Integer-Programming, 01-Programming

Integer-Programming (ILP): Exactly like Linear Programming but with the extra constraint that the solutions must be integers. Decision version:

Given: (integer) matrix **A** and (integer) vector **b**

Is there an integer solution to $Ax \leq b$ and $x \geq 0$?

01-Programming:

Given: (integer) matrix A and (integer) vector b

Is there an solution to $Ax \leq b$ with $x \in \{0, 1\}$?

Then we have Vertex-Cover \leq_P 01-Programming \leq_P Integer-Programming

Beyond P?

Independent-Set, Clique, Vertex-Cover, 01-Programming, Integer-Programming and 3Color are examples of natural and practically important problems for which we don't know any polynomial-time algorithms.

There are many others such as...

DecisionTSP:

Given a weighted graph G and an integer k, Is there a tour that visits all vertices in G having total weight at most k?

and...

Satisfiability

- Boolean variables x_1, \dots, x_n
 - taking values in {0, 1}. 0=false, 1=true
- Literals
 - x_i or $\neg x_i$ for i = 1, ..., n. $(\neg x_i$ also written as $\overline{x_i}$.)
- Clause
 - a logical OR of one or more literals
 - e.g. $(x_1 \lor \neg x_3 \lor x_7 \lor x_{12})$
- CNF formula
 - a logical AND of a bunch of clauses
- k-CNF formula
 - All clauses have exactly **k** variables

Satisfiability

CNF formula example:

$$(x_1 \vee \neg x_3 \vee x_4) \wedge (\neg x_4 \vee x_3) \wedge (x_2 \vee \neg x_1 \vee x_3)$$

Defn: If there is some assignment of 0's and 1's to the variables that makes it true then we say the formula is satisfiable

- $(x_1 \lor \neg x_3 \lor x_4) \land (\neg x_4 \lor x_3) \land (x_2 \lor \neg x_1 \lor x_3)$ is satisfiable: $x_1 = x_3 = 1$
- $x_1 \land (\neg x_1 \lor x_2) \land (\neg x_2 \lor x_3) \land \neg x_3$ is not satisfiable.

3SAT: Given a CNF formula *F* with exactly 3 variables per clause, is *F* satisfiable?

Common property of these problems

- There is a special piece of information, a short certificate or proof, that allows you to efficiently verify (in polynomial-time) that the YES answer is correct. This certificate might be very hard to find.
 - 3Color: the coloring.
 - Independent-Set, Clique: the set *U* of vertices
 - Vertex-Cover: the set W of vertices
 - 01-Programming, Integer-Programming: the solution x
 - Decision-TSP: the tour
 - **3SAT**: a truth assignment that makes the CNF formula *F* true.

The complexity class NP

NP consists of all decision problems where

 You can verify the YES answers efficiently (in polynomial time) given a short (polynomial-size) certificate

and

No fake certificate can fool your polynomial time verifier into saying
 YES for a NO instance

More precise definition of NP

A decision problem A is in NP iff there is

- a polynomial time procedure **VerifyA**(.,.) and
- a polynomial p

s.t.

• for every input x that is a YES for A there is a string t with $|t| \le p(|x|)$ with VerifyA(x, t) = YES

and

- for every input x that is a NO for A there does not exist a string t with $|t| \le p(|x|)$ with VerifyA(x, t) = YES
- A string t on which VerifyA(x, t) = YES is called a *certificate* for x or a *proof* that x is a YES input

Verifying the certificate is efficient

3Color: the coloring

 Check that each vertex has one of only 3 colors and check that the endpoints of every edge have different colors

Independent-Set, **Clique**: the set **U** of vertices

• Check that $|U| \ge k$ and either no (IS) or all (Clique) edges on present on U

Vertex-Cover: the set W of vertices

• Check that $|W| \leq k$ and W touches every edge.

01-Programming, Integer-Programming: the solution x

• Check type of x; plug in x and see that it satisfies all the inequalities.

Decision-TSP: the tour

- Check that tour touches each vertex and has total weight $\leq k$.
- 3-SAT: a truth assignment α that makes the CNF formula F true.
 - Evaluate F on the truth assignment α .

Keys to showing that a problem is in NP

- 1. Must be decision probem (YES/NO)
- 2. For every given **YES** input, is there a certificate (i.e., a hint) that would help?
 - OK if some inputs don't need a certificate
- 3. For any given **NO** input, is there a fake certificate that would trick you?
- 4. You need a polynomial-time algorithm to be able to tell the difference.

Another NP problem

Sudoku:

- Is there a solution where this square has value 4?
- Certificate = full filled in table
 - Easy to check

9			5					
6	2		7			5		
		5				6		7
Г		6			4			
2				3			9	
	8						1	
4								8
			1	8		4		
7							2	

Fact: All NP problems could be solved efficiently by solving any of the problems on the previous slide efficiently or even by doing it for a general $n^2 \times n^2$ version of Sudoku!

Solving NP problems without hints

There is an obvious algorithm for all **NP** problems:

Brute force:

Try all possible certificates and check each one using the verifier to see if it works.

Even though the certificates are short, this is exponential time

- 2^n truth assignments for n variables
- $\binom{n}{k}$ possible k-element subsets of n vertices
- n! possible TSP tours of n vertices
- etc.

What We Know

- Every problem in NP is in exponential time
- Every problem in P is in NP
 - You don't need a certificate for problems in P so just ignore any hint you are given
- Nobody knows if all problems in NP can be solved in polynomial time;
 i.e., does P = NP?
 - one of the most important open questions in all of science.
 - huge practical implications
- Most CS researchers believe that P ≠ NP
 - \$1M prize either way
 - but we don't have good ideas for how to prove this ...

NP-hardness & NP-completeness

Notion of hardness we can prove that is useful unless P = NP:

Defn: Problem B is NP-hard iff every problem $A \in NP$ satisfies $A \leq_P B$.

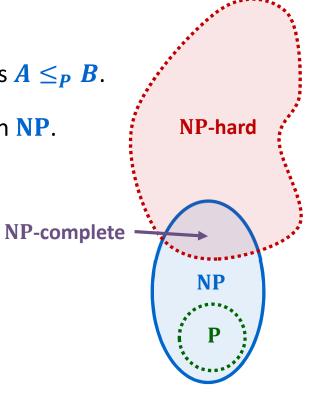
This means that B is at least as hard as every problem in NP.

Defn: Problem **B** is **NP**-complete iff

- $B \in NP$ and
- **B** is **NP**-hard.

This means that **B** is a hardest problem in **NP**.

Not at all obvious that any NP-complete problems exist!



Cook-Levin Theorem

Theorem [Cook 1971, Levin 1973]: 3SAT is NP-complete

Proof: See CSE 431.

Corollary: If $3SAT \leq_P B$ then B is NP-hard.

Proof: Let A be an arbitrary language in NP. Since **3SAT** is NP-hard we have $A \leq_P 3SAT$.

Then $A \leq_P 3SAT$ and $3SAT \leq_P B$ imply that $A \leq_P B$.

Therefore every language A in NP has $A \leq_P B$ so B is NP-hard.

Cook & Levin did the hard work.

We only need to give one reduction to show that a problem is NP-hard!

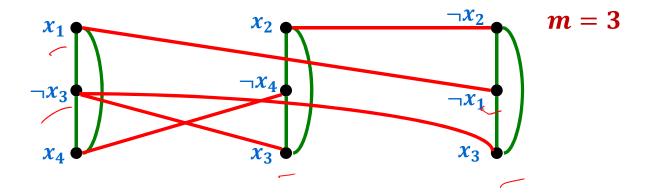
Another NP-complete problem: $3SAT \leq_P$ Independent-Set

1. The reduction:

- Map CNF formula F to a graph G and integer k
- Let m = # of clauses of F
- Create a vertex in G for each literal occurrence in F
- Join two vertices u, v in G by an edge iff
 - u and v correspond to literals in the same clause of F (green edges) or
 - u and v correspond to literals x and $\neg x$ (or vice versa) for some variable x (red edges).
- Set k = m
- 2. Clearly polynomial-time computable

Another NP-complete problem: $3SAT \leq_P Independent-Set$

$$\mathbf{F} = (x_1 \vee \neg x_3 \vee x_4) \wedge (x_2 \vee \neg x_4 \vee x_3) \wedge (\neg x_2 \vee \neg x_1 \vee x_3)$$



G has both kinds of edges.

The color is just to show why the edges were included.

$$k=m$$
 ?

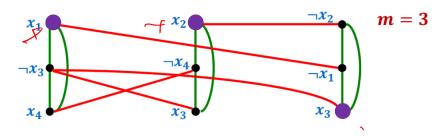
Correctness (⇒)

Suppose that **F** is satisfiable (**YES** for **3SAT**)

- Let α be a satisfying assignment; it satisfies at least one literal in each clause.
- Choose the set *U* in *G* to correspond to the **first** satisfied literal in each clause.
 - |U| = m
 - Since *U* has 1 vertex per clause, no green edges inside *U*.
 - A truth assignment never satisfies both x and
 ¬x, so no red edges inside U.
 - Therefore *U* is an independent set of size *m*

Therefore (G, m) is a YES for Independent-Set.

$$\mathbf{F} = (\underline{x_1} \vee \neg x_3 \vee \underline{x_4}) \wedge (\underline{x_2} \vee \neg x_4 \vee x_3) \wedge (\neg x_2 \vee \neg x_1 \vee x_3)$$



Satisfying assignment α :

$$\alpha(x_1) = \alpha(x_2) = \alpha(x_3) = \alpha(x_4) = 1$$

Set *U* marked in purple is independent.

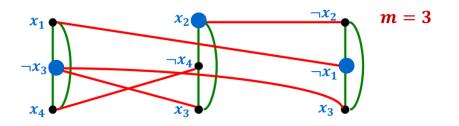
Correctness (⇐)

Suppose that G has an independent set of size m ((G, m)) is a YES for Independent-Set)

- Let *U* be the independent set of size *m*;
- U must have one vertex per column (green edges)
- Because of red edges, *U* doesn't have vertex labels with conflicting literals.
- Set all literals labelling vertices in *U* to true
- This may not be a total assignment but just extend arbitrarily to a total assignment α .
 - This assignment satisfies F since it makes at least one literal per clause true.

Therefore **F** is satisfiable and a **YES** for **3SAT**.

$$\mathbf{F} = (x_1 \vee \neg x_3 \vee x_4) \wedge (x_2 \vee \neg x_4 \vee x_3) \wedge (\neg x_2 \vee \neg x_1 \vee x_3)$$



Given independent set U of size m

Satisfying assignment α : Part defined by U:

$$\alpha(x_1)=0, \alpha(x_2)=1, \alpha(x_3)=0$$

Set $\alpha(x_4) = 0$.

Many NP-complete problems

Since 3SAT \leq_P Independent-Set, Independent-Set is NP-hard.

We already showed that **Independent-Set** is in **NP**.

⇒ Independent-Set is NP-complete

Corollary: Clique, Vertex-Cover, 01-Programming, and Integer-Programming are also NP-complete.

Proof: We already showed that all are in **NP**.

We also showed that Independent-Set polytime reduces to all of them.

Combining this with $3SAT \leq_P Independent-Set$ we get that all are NP-hard.