CSE 421 Introduction to Algorithms

Lecture 21: Linear Programming Duality

Stides. Stides. Specture 21 - Acuta lity. pat

Max Flow in Standard Form LP

Minimization or Maximization

Minimize $c^{\top}x$ subject to $Ax \ge b$ $x \ge 0$

Maximize $(-c)^{\top}x$ subject to $(-A)x \le (-b)$ $x \ge 0$

Shortest Paths

Given: Directed graph G = (V, E)vertices *s*, *t* in *V*

Find: shortest path from s to t

Claim: Length ℓ of the shortest path is the solution to this program.

Proof sketch: A shortest path yields a solution of cost ℓ . Optimal solution must be a combination of flows on shortest paths also cost ℓ ; otherwise there is a part of the **1** unit of flow that gets counted on more than ℓ edges.

Claim: Optimum ≤ 6 Proof: Add the two LHS: $2x_1 - x_2 + 3x_3 \neq 1$ $+ (-x_1 + x_2 - x_3) \leq 5$ $= x_1 + 2x_3$. ≤ 6 Must be \leq sum of RHS = 6. We multiplied the 1st inequality by a = 1, the 2nd by b = 1 and added. Claim: For all $a, b \ge 0$ if $2a - b \ge 1$ $-a + b \ge 0$ $3a - b \ge 2$ then Optimum $\le a + 5b$ Proof: $x_1 + 2x_3$

Proof: $x_{1} + 2x_{3}$ $\leq a(2x_{1} + x_{2} + 3x_{3})$ $+b(-x_{1} + x_{2} - x_{3})$ $\leq 1a + 5b.$

We multiplied the 1st inequality by a = 1, the 2nd by b = 1 and added.

Claim: For all $a, b \ge 0$ if $2a - b \ge 1$ $-a + b \ge 0$ $3a - b \ge 2$ then Optimum $\le a + 5b$

Proof: $x_1 + 2x_3$ $\leq a(2x_1 - x_2 + 3x_3)$ $+b(-x_1 + x_2 - x_3)$ $\leq 1a + 5b.$

Maximize $x_1 + 2x_3$ subject to a $2x_1 - x_2 + 3x_3 \le 1$ b $-x_1 + x_2 - x_3 \le 5$ primal $x \ge 0$

Minimize a + 5b

subject to

$$2a - b \ge 1$$

 $-a + b \ge 0$ dual
 $3a - b \ge 2$
 $a, b \ge 0$

We multiplied the 1st inequality by a = 1, the 2nd by b = 1 and added. Claim: For all $a, b \ge 0$ if $2a - b \ge 1$ $-a + b \ge 0$ $3a - b \ge 2$ then Optimum $\le a + 5b$

Proof: $x_1 + 2x_3$ $\leq a(2x_1 - x_2 + 3x_3)$ $+b(-x_1 + x_2 - x_3)$ $\leq 1a + 5b.$

Maximize $x_1 + 2x_3$ subject to a $2x_1 - x_2 + 3x_3 \le 1$ b $-x_1 + x_2 - x_3 \le 5$ primal $x \ge 0$

Maximize
$$-a - 5b$$

subject to
 $-2a + b \le -1$
 $a - b \le 0$ dual
 $-3a + b \le -2$
 $a, b \ge 0$

We multiplied the 1st inequality by a = 1, the 2nd by b = 1 and added. Claim: For all $a, b \ge 0$ if

 $2a - b \ge 1$ $-a + b \ge 0$ $3a - b \ge 2$ then Optimum $\le a + 5b$

Proof: $x_1 + 2x_3$ $\leq a(2x_1 - x_2 + 3x_3)$ $+b(-x_1 + x_2 - x_3)$ $\leq 1a + 5b.$

10

Maximize $x_1 + 2x_3$ Minimize $-1y_1 - 2y_3$ subject to subject to $2x_1 - x_2 + 3x_3 \le 1$ a $-2y_1 + y_2 - 3y_3 \ge -1 \le$ $-x_1 + x_2 - x_3 \leq 5$ primal b $y_1 - y_2 + y_3 \ge -5$ $x \ge 0$ $y \ge 0$ Maximize -a - 5bequivalent to subject to Maximize $y_1 + 2y_3$ $-2a+b\leq/-1$ **y**₁ subject to $\begin{array}{c} \mathbf{y}_2 \\ \mathbf{y}_2 \\ \mathbf{a} - \mathbf{b} \leq \mathbf{0} \end{array}$ dual $2y_1 - y_2 + 3y_3 \le 1$ $\mathbf{y}_3 \qquad -3a+b \leq -2$ $-y_1 + y_2 - y_3 \le 5$ $a, b \geq 0$ $v \ge 0$

What is the dual of the dual?

primaldualMaximize $c^T x$ Minimize $b^T y$ subject tosubject to $Ax \leq b$ $A^T y \geq c$ $x \geq 0$ $y \geq 0$

Theorem: The dual of the dual is the primal.

Theorem (Weak Duality): Every solution to primal has a value that is at most that of every solution to dual.

Proof: We constructed the dual to give upper bounds on the primal.

primaldualMaximize $c^T x$ Minimize $b^T y$ subject tosubject to $Ax \leq b$ $A^T y \geq c$ $x \geq 0$ $y \geq 0$

Theorem: The dual of the dual is the primal.

Theorem (Weak Duality): Every solution to primal has a value that is at most that of every solution to dual.

Theorem (Strong Duality): If primal has a solution of finite value, then that value is equal to optimal solution of dual.

Saving dual variables for equalities

Dual of Max Flow

Use a different names to avoid confusion with capacity vector Maximize $g^T x$ subject to $Ax \le h$ $x \ge 0$

1.
$$g_e = \begin{cases} 1 & \text{if } e \text{ out of } s \\ 0 & \text{otherwise} \end{cases}$$

 $a_e \ 2. \quad x_e \leq c(e)$
 $b_v \ 3. \quad \sum_{e \text{ into } v} x_e - \sum_{e \text{ out of } v} x_e = 0$
 $4. \quad x \geq 0$
 $v \in S - \{s, t\}$

Minimize $\sum_{e} c(e) a_{e} \equiv c^{T} a$ subject to

 $a_e + b_v \ge 1$ if e = (s, v) $a_e - b_u \ge 0$ if e = (u, t) $a_e - b_u + b_v \ge 0$ if e = (u, v) $a \ge 0$ $u, v \in S - \{s, t\}$

More uniform way to write Max Flow Dual

Minimize $\sum_{e} c(e) a_{e} \equiv c^{\top} a$ Minimize $\sum_{e} c(e) a_{e} \equiv c^{\top} a$ subject to subject to $a_e + b_v \ge 1$ if e = (s, v)Define $b_{s} = 1$ $b_{s} = 1$ $b_t = 0$ $b_t = 0$ $a_e - b_u \geq 0$ if e = (u, t) $a_e - b_u + b_v \geq 0$ $a_e - b_u + b_v \ge 0$ if e = (u, v)for e = (u, v) $u, v \in S - \{s, t\}$ $a \ge 0$ $a \ge 0$

Simpler to read Max Flow Dual

Minimize $\sum_{e} c(e) a_{e} \equiv c^{\top} a$ subject to $b_{s} = 1$ $b_{t} = 0$ $a_{e} - b_{u} + b_{v} \ge 0$ for e = (u, v)

All the $c(e) \ge 0$, so we want the a_e as small as possible. Minimize $\sum_{e} c(e) a_{e} \equiv c^{\top} a$ subject to

$$b_s = 1$$

 $b_t = 0$

 $a_e = \max(b_u - b_v, 0)$ for e = (u, v)

 $a \ge 0$

 $\sum_{e} c(e) a_{e} \equiv c^{\mathsf{T}} a$ subject to $b_{s} = 1$ $b_{t} = 0$

 $a_e = \max(b_u - b_v, 0)$ for e = (u, v) Claim: Optimum is achieved with $0 \le b_v \le 1$ for every vertex v.

Proof:

Move b_v values between 0 and 1Reduces: $a_e = \text{length if } e \text{ is down}$ Doesn't change: $a_e = 0$ if e is up Overall solution improves.

 $\sum_{e} c(e) a_{e} \equiv c^{\top} a$ subject to $b_{s} = 1$ $b_{t} = 0$ $0 \leq b_{v} \leq 1$ $a_{e} = \max(b_{u} - b_{v}, 0)$ for e = (u, v) Claim: Optimum is achieved with $0 \le b_v \le 1$ for every vertex v.

Proof:

Move b_v values between 0 and 1Reduces: $a_e = \text{length if } e \text{ is down}$ Doesn't change: $a_e = 0$ if e is up Overall solution improves.

 $\sum_{e} c(e) a_{e} \equiv c^{\top} a$ subject to $b_{s} = 1$ $b_{t} = 0$ $0 \leq b_{v} \leq 1$ $a_{e} = \max(b_{u} - b_{v}, 0)$ for e = (u, v)

 $\sum_{e} c(e) a_{e} \equiv c^{\top} a$ subject to $b_{s} = 1$ $b_{t} = 0$ $0 \leq b_{v} \leq 1$ $a_{e} = \max(b_{u} - b_{v}, 0)$ for e = (u, v) **Claim:** Optimum is achieved with $b_v = 0$ or $b_v = 1$ for every vertex v.

Proof:

Choose uniform random $r \in [0, 1]$

Set
$$\boldsymbol{b}_{\boldsymbol{v}} = \begin{cases} \mathbf{1} & \text{if } \boldsymbol{b}_{\boldsymbol{v}} \geq \boldsymbol{r} \\ \mathbf{0} & \text{if } \boldsymbol{b}_{\boldsymbol{v}} < \boldsymbol{r} \end{cases}$$

Expected value for random r is the same as the original since edge e of length a_e is cut w.p. a_e . So... one of those random choices must be at least as good.

 $\sum_{e} c(e) a_{e} \equiv c^{\top} a$ subject to $b_{s} = 1$ $b_{t} = 0$ MinCut! $b_{v} \in \{0, 1\}$ $a_{e} = \max(b_{u} - b_{v}, 0)$ for e = (u, v)

Duality of Shortest Paths

Minimize $\sum_{e} x_{e}$ subject to $\sum_{e \text{ out of } s} x_{e} = 1$ $\sum_{e \text{ into } t} x_{e} = 1$

 $\sum_{e \text{ into } v} x_e - \sum_{e \text{ out of } v} x_e = 0$ for all $v \in V - \{s, t\}$

 $x \ge 0$

Duality of Shortest Paths

Minimize $\sum_{e} x_{e}$

subject to

 $x \ge 0$

$$a_s \sum_{e \text{ into } s} x_e - \sum_{e \text{ out of } s} x_e = -1$$

$$a_t \sum_{e \text{ into } t} x_e - \sum_{e \text{ out of } t} x_e = 1$$

$$a_{v} \sum_{e \text{ into } v} x_{e} - \sum_{e \text{ out of } v} x_{e} = 0$$

for all $v \in V - \{s, t\}$

Maximize $a_s - a_t$ subject to

$$a_u - a_v \le 1$$

if $e = (u, v)$

Duality and Zero-Sum Games

Two player zero-sum game:

An $m \times n$ matrix **G**

G_{i,j} = payoff to row player assuming: row player uses strategy *i*, and column player uses strategy *j*.

Column player's payoff for game = $-G_{i,j}$

Example: Chess (idealized)

i specifies how white would move in every possible board configuration.

j specifies how black would move.

 $G_{i,j} = \begin{cases} +1 & \text{White checkmates} \\ -1 & \text{Black checkmates} \\ 0 & \text{Draw on board} \end{cases}$

Randomized Strategy:

Probability distribution on row strategies:

• A column vector x with each $x_i \ge 0$

 $\sum_{i} x_i = 1$

Probability distribution on column strategies:

• A column vector
$$y$$
 with each $y_i \ge 0$

 $\sum_{j} y_{j} = 1$

Expected payoff to row player: $x^{\top}G y$

Who decides on their strategy first

If row player commits to x:

Row player will get payoff $\min_{y} \underbrace{x^{\top} G y}_{j} = \min_{j} (x^{\top} G)_{j}$

So if row player plays first they can get payoff

 $\max_{x} \min_{y} x^{\mathsf{T}} G y$

If column player commits to y:

Row player will get payoff

 $\max_{x} x^{\mathsf{T}} G y = \max_{i} (G y)_{i}$

So if column player plays first, row player can get payoff

$$\min_{y} \max_{x} x^{\mathsf{T}} G y$$

Randomized Strategy:

Probability distribution on row strategies:

• A column vector x with each $x_i \ge 0$

 $\sum_{i} x_i = \mathbf{1}$

Probability distribution on column strategies:

A column vector y with each $y_j \ge 0$

 $\sum_{j} y_{j} = 1$

Expected payoff to row player: $x^{\top}G y$

Von Neumann's MiniMax Theorem

If row player commits to x:

Row player will get payoff $\min_{y} x^{\mathsf{T}} G y = \min_{j} (x^{\mathsf{T}} G)_{j}$

So if row player plays first they can get payoff

 $\max_{\boldsymbol{x}} \min_{\boldsymbol{y}} \boldsymbol{x}^{\mathsf{T}} \boldsymbol{G} \boldsymbol{y}$

If column player commits to y:

```
Row player will get payoff
```

 $\max_{x} x^{\mathsf{T}} G y = \max_{i} (G y)_{i}$

So if column player plays first, row player can get payoff

 $\min_{\mathbf{y}} \max_{\mathbf{x}} \mathbf{x}^{\mathsf{T}} \mathbf{G} \mathbf{y}$

It doesn't matter who plays first!

Theorem: $\max_{x} \min_{y} x^{\top} G y = \min_{y} \max_{x} x^{\top} G y$

Use Strong Duality to prove MiniMax Theorem

Theorem: $\max_{x} \min_{y} x^{T} G y = \min_{y} \max_{x} x^{T} G y$ i.e., $\max_{x} \min_{j} (x^{T} G)_{j} = \min_{y} \max_{i} (G y)_{i}$

Primal

Maximize z subject to

$$\sum_{i} x_{i} = 1$$

$$\sum_{j} z - (x^{T}G)_{j} \leq 0^{*}$$
for all j

$$x \geq 0$$
*equivalent to $z \leq \min(x^{T}G)_{j}$

Dual Minimize W subject to

 $\sum_{j} y_{j} = 1$ Coefficient of z must be 1 $w - (G \ y)_{i} \ge 0^{*}$ Coefficient of x_{i} must be ≥ 0 for all i $y \ge 0$ *equivalent to $w \ge \max_{i} (G \ y)_{i}$