CSE 421
Introduction to Algorithms

Lecture 21: Linear Programming Duality



Given: a polytope \ X 0V

&N
7 7
Find: the lowest point in the polytope Y; V“?
g
- A
s \N
\V =
e
Maximize ¢ x
subject to
Ax < b.
2 b1 %@
As At maX|mum x Typically # constraints m > n
2 x = Lowest point is a vertex defined
A3 by some nrows, A'x = b’



Max Flow in Standard Form LP

Maximize 2 Xe

eoutofs
subject to

0<x,<c(e)foreverye €EE

Y x= Y s )

e outofv eintov

for every nodev € V — {s, t} 2.

Replace equality constraints by a 3.
pair of inequalities 4

5.

Maximize c" x

subject to
Ax < b

x>0 This is for the ¢ above.
Nothing to do with

.
/ capacities!
- — 1 ifeoutofs
€ 0 otherwise
Xe < c(e)

Zeoutofvxe _ Zeintovxe <0
Zeintovxe _ Zeoutofvxe <0

x>0



Minimization or Maximization

Minimize ¢ x Maximize (—c)"x
subject to > subject to
Ax = Db (—A)x < (—b)

x=0 x>0



Shortest Paths

Given: Directed graph ¢ = (V,E)
vertices s, tinV

Find: shortest path from sto ¢

Claim: Length ¥ of the shortest path is
the solution to this program.

Proof sketch: A shortest path yields a
solution of cost Y. Optimal solution
must be a combination of flows on
shortest paths also cost #; otherwise
there is a part of the 1 unit of flow that
gets counted on more than ¢ edges.

Minimize Z Xe Total flow
e
subject to
x=>0
Z Xe — 1 Flow outof sis 1
eoutofs

Flowintotis 1

[
mk
[l
e

eintot
eoutofv eintov

for every nodev € V — {s, t}

Flow conservation



subject to
2x1—x2+3x3 < 1
—X1 + X2 — X3 < 5

*=20

Claim: Optimum < 6
Proof: Add the two LHS:
2x1 — X5 + 3x3 &
+ (—x1+x,— x3)< g
= X +2x3. =/,
Must be < sum of RHS = 6.

MC\/U)WW\
We multiplied the 1st inequality
a =1,the2"by b = 1 and added.

Claim: Foralla,b = 0 if

2a-b=1 (1>
“a+b=>0 -
3a—b =2 \C

then Optimu

Proof: xi [+ / 2x3
T X2 + 3x3)

+b (<xi 4% = x3)




Duality ar

o L MZ?]

@, Maximize X1 + 2x3

K
subject to é
a le — Xp + 3x3 @ 2

<|1
b —X1 + X2 — X3 < 5 primal
x=>0
@?TCUW =
< Minimize|a + 5b
subject to

2a — b|=|1
—a + bl>l0 dual
3a—b|=|2

A\%\

We multiplied the 1st inequality by
a =1,the2"by b = 1 and added.

Claim: Foralla,b = 0 if

2a— b > 1
—a+b=>0
3a—b=>2

then Optimum < a + 5b

Proof: X1 + 2x3
<a(2x1—x, + 3x3)
+b (—x1 + X — X3)

7 ab=z0 f &W%Zﬁ < la + 5b.



Duality

Maximize X1 + 2x3

subject to
a 2x;—x,+3x3<1
b —X1 -+ X2 — X3 < 5 primal
x=0

Minimize a + 5b
subject to
2a—b =1
—a+b=>0 dual
3a—b =2
ab >0

We multiplied the 1st inequality by
a =1,the2"by b = 1 and added.

Claim: Foralla,b = 0 if

2a— b > 1
—a+b=>0
3a—b=>2

then Optimum < a + 5b

Proof: X1 + 2x3
<a(2x1—x, + 3x3)
+b (—x1 + x5 — Xx3)
< 1la + 5b.



Duality

Maximize X1 + 2x3

subject to
a 2x;—x,+3x3<1
b —X1 -+ X2 — X3 < 5 primal
x=0

Maximize —a — 5b

subject to
—2a+b < -1
a—-b< 0 dual
—3a+b < -2

ab>0

We multiplied the 1st inequality by
a =1,the2"by b = 1 and added.

Claim: Foralla,b = 0 if

2a— b > 1
—a+b=>0
3a—b=>2

then Optimum < a + 5b

Proof: X1 + 2x3
<a(2x1—x, + 3x3)
+b (—x1 + x5 — Xx3)
< 1la + 5b.
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Duality

What is the dual of the dual?

\Mmlmlze —1y4 —23’3 \

Maximize X1 + 2x3

subject to <ubiect to
a 2x1—x2+3x3S1 ‘ J _9 n _3 > _1
b —x1+x2— X3S5 primal Y1 Y2 Y3 =
x>0 Yy1—Y2 t+ Y3=-5
\/ y=>0

subject to /
- —2a+b< 1 Ma).(lmlze yq + 2y3
vy - S 0 dual subject to
Y3 —3a+b<ﬂ—2\ | T ya T Sys =2
ab>0 S~ — y 1t y 2 — 3 =5



Duality

primal dual i
Maximize c"x Minimize by —
subjectto .~ subject to~

Ax <b Ay > ¢

x=>0 y=0

Proof:
dual of dual dual of dual
Minimize (—c)"x Minimize —c"x
subject to = subject to
(FA)HT'x = (=b)' —Ax > —b'

x=0 x>0

11

dual
Maximize (—b) "y
subject to
(-A)'y < —c
y=0

dual of dual
Maximize ¢’ x
subject to
Ax < b’
x=>0



12

Duality

primal dual
Maximize ¢ x Minimize b"y
subject to subject to
Ax <b Ay > ¢
x=>0 y=0

Theorem: The dual of the dual is the primal.

Theorem (Weak Duality): Every solution to primal has a value that is at
most that of every solution to dual.

Proof: We constructed the dual to give upper bounds on the primal.
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Duality

primal dual
Maximize ¢ x Minimize b"y
subject to subject to
Ax <b Ay > ¢
x=>0 y=0

Theorem: The dual of the dual is the primal.

Theorem (Weak Duality): Every solution to primal has a value that is at
most that of every solution to dual.

Theorem (Strong Duality): If primal has a solution of finite value, then
that value is equal to optimal solution of dual.



Duality

primal dual
Maximize c'x Minimize b"y
subject to subject to
Ax < b Ay >c
x=0 y=0

e

heorem (Strong Duality): If
primal has a solution of finite
value, then that value is equal
to optimal solution o}ual

@@\\

Fact: A;c \{ertex }ht A:EZ/E/C
inequali —4,

~ Physics: Coefficient vec -
' /y' = 0 for tight rows can be [//\
ombined to get ¢ . o

.
> —
—
(b)Y = @x)'y' =x"(A)Ty' = @
- — —

=x'c=c'x

since x'c and ¢ ' x are just numbers.
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Saving dual variables for equalities

Maximize x; + 4x, Minimize 5(a’—a’) + ...

subject to

!

Standard form I x 2 O

conversion for

a 3x;1—2x, <5
a” —3.7(.'1 + sz < -5

subject to
Dual

3(d—a’ )+ .21 —
m— _2( - ,,) + > 2 a —a’ can
(a a ) = take on any

@2 0 real value

equality
Maximize x; + 4x, Minimize5a + ...
subject to subject to
a 3x;—2x,=5 ol 3a+ ..>1
x 2 .
 =2a+ .24 No requirement
x> (0 [|usedirectconversion! .20 thata =0
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Dual of Max Flow

Use a different
names to avoid
confusion with
capacity vector

Maximize g x

subject to
Ax < h
x>0
)1 ifeoutofs
Je = .
0 otherwise
xe < c(e)
Zeintovxe - Ze outof vXe =
x>0
vES—{st}

0

Minimize Y, c(e)a, =c'a
subject to

a,+b,=>1 ife=(s,v)
a,— b, >0 ife=(u,t)
a,—b,+b,>0 ife=(uv)

a=>0 u,v €S —{s,t}
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More uniform way to write Max Flow Dual

Minimize Y .c(e)a, =c'a
subject to
a,+b,=>1 ife=(s,v) Define
b, =1
a,— b, >0 ife=(ut) by =0

a,—b,+b,=>0 ife=(uv)

u,veS—{st}
a=0

Minimize Y. c(e)a, =c'a
subject to
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Simpler to read Max Flow Dual

Minimize Y, c(e)a, =c'a
subject to

b, =1

b, = 0

a,—b,+b,=>0
fore = (u, v)

a=>0

All the c(e) = 0, so
we want the a, as
small as possible.

Minimize Y .c(e)a, =c'a
subject to

b, =

b, = 0

a, = max(b, — b,,0)
fore = (u,v)
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Minimize
Y.c(e)a, =c'a
subject to
b, =1
b;=0

a, = max(b, — b,,0)
fore = (u, v)

Claim: Optimum is achieved with T T T

0 < b, < 1 for every vertex v. ®
Proof: O
Move b,, values between 0 and 1 O
Reduces: O«

a, = length if e is down o O« 0
Doesn’t change: 0.3 0 OO O
a, =0ifeisup O
.. O O
Overall solution improves. O O
OO0
O
O
O
OO
O O
®
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Minimize
Y.c(e)a, =c'a
subject to
b, =1
b;=0
0<b,<1

a, = max(b, — b,,0)
fore = (u, v)

Claim: Optimum is achieved with T T T

0 < b, < 1 for every vertex v. ®
Proof: O
Move b,, values between 0 and 1 O
Reduces: O«

a, = length if e is down o O« 0
Doesn’t change: 0.3 0 OO O
a, =0ifeisup O
.. O O
Overall solution improves. O O
OO0
O
O
O
OO
O O
®
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Minimize
Ye.cle)a, =c'a
subject to
b, =1
b,=0
0<b,<1

a, = max(b, — b,,0)
fore = (u, v)
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Minimize
Ye.cle)a, =c'a
subject to
b, =1
b,=0
0<b,<1

a, = max(b, — b,,0)
fore = (u, v)

Y VIR

Claim: Optimum is achieved with l
b, = 0 or b, = 1 for every vertex v. P
Proof: O %
Choose uniform random r € [0, 1] Qe ©

1 ifb,>r I L0 KO0
Set b, = . =

0 ifb,<r a ?
Expected value for random 7 is the ?O 3 ?

O

same as the original since edge e of
length a, is cut w.p. a,.

So... one of those random choices
must be at least as good.
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Minimize
Y.c(e)a, =c'a
subject to
b, =1
b; =0
b, €{0,1}

a, = max(b, — b,,0)
fore = (u,v)

MinCut!
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Duality of Shortest Paths

Minimize )., x,
subject to

Zeoutofsxe =1
Zeintotxe =1

Zeintovxe - Zeoutofvxe =0
forallv eV —{s, t}

x>0



Duality of Shortest Paths

Minimize )., x,

subject to
Maximize a; — a,
As YeintosXe — LeoutofsXe = —1 subject to
ag Zeintotxe_z:eoutoftxe:]- a, —a, < 1

ife = (u,v)
a, Zeintovxe — Zeoutofvxe =0
forallv eV — {s, t}

x>0

25
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Duality and Zero-Sum Games

Two player zero-sum game:

Anm Xn matr@

G;; = payoff to row player assuming:
row player uses strategy i, and

column player uses strategy j.
Column player’s payoff for game = —Gi,]-

Example: Chess (idealized)

[ specifies how white would move in every
possible board configuration.

J specifies how black would move.

+1 White checkmates
G;j ={—1 Black checkmates
0 Draw on board

Randomized Strategy:

Probability distribution on row strategies:
* A column vector x with eachx; = 0

in:].

i
Probability distribution on column strategies:
* A column vector y with each y; = 0

>
J

Expected payoff to row player:

x'Gy
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Who decides on their strategy first

If row player commits to x: Randomized Strategy:
Row player will get payoff

min xTGy = min(xT G)j Probability distribution on row strategies:

y — J 7 * A column vector x with eachx; = 0
So if row player plays first they can get payoff Z X =1
max min x' Gy i l
x y

Probability distribution on column strategies:

If column player commits to y: ,
* A column vector y with each y; = 0

Row player will get payoff
max x' Gy = max(G y); z y; =1
X i J
J

So if column player plays first, row player can

t f Expected payoff to row player:
get payo

T

. x' G

min max x' Gy y
y X
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Von Neumann’s MiniMax Theorem

If row player commits to x:
Row player will get payoff
minx'Gy = min(x'G);
y J It doesn’t matter who plays first!
So if row player plays first they can get payoff

max min x' Gy Theorem:
X y . TG . TG
If column player commits to y: my?x m)}n X ay = m)}n man by

Row player will get payoff
max x' Gy = max(G y);
X l

So if column player plays first, row player can
get payoff

min maxx' Gy
y X



Use Strong Duality to prove MiniMax Theorem

Theorem: max min x'Gy = min maxx' Gy
X y y X

i.e., max min(x' G); = min max(G y);
X j y i
Primal Dual

Maximizerg, Minimize w

subject to subject to
w 2ixi=1 Zj yj = 1 Coefficient of z must be 1

i Z— (xTG)]- < 0" w — (G y); = 07 Coefficient of x; must be > 0
\ forallj forall i
x=0 y=>0
*equivalentto z < m_in(xTG)]- *equivalenttow = m?x(G Y)i

: =



