
CSE 421

Introduction to Algorithms

Lecture 21:  Linear Programming Duality
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Given: a polytope

Find: the lowest point in the polytope

Maximize ���
subject to�� ≤ �.

Typically # constraints � ≥ 
 
Lowest point is a vertex defined 

by some 
 rows, ��� = �′

�
At maximum ����� � = ����
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Maximize

subject to

� ≤ �� ≤ � � for every � ∈ �
� ��

�
� ��� �� � = � ��                               �

� ���� �
for every node � ∈ � − {!, #}

� ��
�

� ��� �� ! Maximize ���
subject to�� ≤ �� ≥ �

1. �� = %& if � out of !� otherwise
2. �� ≤ �(�)
3. ∑ ���� ��� �� � − ∑ �� ≤ � �� ���� �
4. ∑ ���� ���� � − ∑ �� ≤ � �� ��� �� �
5. � ≥ �

Replace equality constraints by a 

pair of inequalities

This is for the � above. 

Nothing to do with 

capacities!

Max Flow in Standard Form LP
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Minimization or Maximization

Minimize ���
subject to�� ≥ �� ≥ �

Maximize (−�)��
subject to(−�)� ≤ (−�)� ≥ �
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Shortest Paths

Given: Directed graph 4 = (�, �)
vertices !, # in �

Find: shortest path from ! to #
Claim: Length ℓ of the shortest path is 

the solution to this program.

Proof sketch: A shortest path yields a  

solution of cost ℓ.  Optimal solution 

must be a combination of flows on 

shortest paths also cost ℓ; otherwise 

there is a part of the & unit of flow that 

gets counted on more than ℓ edges.

Minimize

subject to

� ≥ �
� ��

�
� ��� �� ! = &              

� ��
�

� ���� # = &           
� ��

�
� ��� �� � = � ��

�
� ���� �

for every node � ∈ � − {!, #}

� ��
�

� 

Flow out of ! is &
Flow into # is &

Flow conservation

Total flow
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Duality

Maximize �& + ���
subject to��& − �� + ��� ≤ &−�& + �� −    �� ≤ 7� ≥ �
Claim: Optimum ≤ 8
Proof:  Add the two LHS:��& − �� + ���+ −�& + �� −    ��  =    �&                  +���.      
Must be ≤ sum of RHS =  8.

We multiplied the 1st inequality by 9 = &, the 2nd by � = & and added.

Claim: For all 9, � ≥ � if �9 − � ≥ &−9 + � ≥ ��9 − � ≥ �
then Optimum ≤ 9 + 7�

Proof:                 �&               +   ���≤ 9 ��& − �� + ���+� −�& + �� −    ��≤ &9 + 7�.

9�
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9�

Duality

Maximize �& + ���
subject to��& − �� + ��� ≤ &−�& + �� −    �� ≤ 7� ≥ �
Minimize 9 + 7�
subject to�9 − � ≥ &−9 + � ≥ ��9 − � ≥ �9, � ≥ �

We multiplied the 1st inequality by 9 = &, the 2nd by � = & and added.

Claim: For all 9, � ≥ � if �9 − � ≥ &−9 + � ≥ ��9 − � ≥ �
then Optimum ≤ 9 + 7�

Proof:                 �&               +   ���≤ 9 ��& − �� + ���+� −�& + �� −    ��≤ &9 + 7�.

primal

dual
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9�

Duality

Maximize �& + ���
subject to��& − �� + ��� ≤ &−�& + �� −    �� ≤ 7� ≥ �
Minimize 9 + 7�
subject to�9 − � ≥ &−9 + � ≥ ��9 − � ≥ �9, � ≥ �

We multiplied the 1st inequality by 9 = &, the 2nd by � = & and added.

Claim: For all 9, � ≥ � if �9 − � ≥ &−9 + � ≥ ��9 − � ≥ �
then Optimum ≤ 9 + 7�

Proof:                 �&               +   ���≤ 9 ��& − �� + ���+� −�& + �� −    ��≤ &9 + 7�.

primal

dual
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Duality

Maximize �& + ���
subject to��& − �� + ��� ≤ &−�& + �� −    �� ≤ 7� ≥ �
Maximize −9 − 7�
subject to−�9 + � ≤ −&  9 − � ≤   �−�9 + � ≤ −�9, � ≥ �

We multiplied the 1st inequality by 9 = &, the 2nd by � = & and added.

Claim: For all 9, � ≥ � if �9 − � ≥ &−9 + � ≥ ��9 − � ≥ �
then Optimum ≤ 9 + 7�

Proof:                 �&               +   ���≤ 9 ��& − �� + ���+� −�& + �� −    ��≤ &9 + 7�.

primal

dual

9�
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Duality

Maximize �& + ���
subject to��& − �� + ��� ≤ &−�& + �� −    �� ≤ 7� ≥ �

What is the dual of the dual?

Minimize  −&:&   − �:�
subject to−�:& + :� − �:� ≥ −&:& − :�  +   :� ≥ −7: ≥ �
equivalent to

Maximize    :& + �:�
subject to�:& − :� + �:� ≤ &−:& + :�  − :� ≤ 7: ≥ �

primal

dual

9�

:&:�:�

Maximize −9 − 7�
subject to−�9 + � ≤ −&  9 − � ≤   �−�9 + � ≤ −�9, � ≥ �
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Duality

primal dual

Minimize ��:
subject to��: ≥ �: ≥ �

Maximize ���
subject to�� ≤ �� ≥ �

Maximize −� �:
subject to(−�)�: ≤ −�: ≥ �

dual

Theorem:  The dual of the dual is the primal.

Proof:

Minimize (−�)��
subject to((−�)�)�� ≥ −� �� ≥ �

dual of dual

Minimize −���
subject to−�� ≥ −��� ≥ �

dual of dual

Maximize ���
subject to�� ≤ ��� ≥ �

dual of dual

≡
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Duality

primal dual

Minimize ��:
subject to��: ≥ �: ≥ �

Maximize ���
subject to�� ≤ �� ≥ �

Theorem:  The dual of the dual is the primal.

Theorem (Weak Duality): Every solution to primal has a value that is at

most that of every solution to dual.     

Proof: We constructed the dual to give upper bounds on the primal.
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Duality

primal dual

Minimize ��:
subject to��: ≥ �: ≥ �

Maximize ���
subject to�� ≤ �� ≥ �

Theorem:  The dual of the dual is the primal.

Theorem (Weak Duality): Every solution to primal has a value that is at

most that of every solution to dual.     

Theorem (Strong Duality): If primal has a solution of finite value, then

that value is equal to optimal solution of dual.
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Duality

dual

Minimize ��:
subject to��: ≥ �: ≥ �

primal

Maximize ���
subject to�� ≤ �� ≥ �
Theorem (Strong Duality): If

primal has a solution of finite

value, then that value is equal

to optimal solution of dual.

Fact: At vertex, 

inequalities are tight��� = ��.

primal

−�&

−�<−�= �Physics: Coefficient vectors :� ≥ � for tight rows  can be 

combined to get ��.
E.g. there are :=, :< ≥ � s.t. :=�= + :<�< =  ��. 
Set :> for all other rows to �, get : � = :��� = ��

so ��: = �.

Then��: = (��)�:� = ��� �:� = �� �� �:� = ����:= ��� = ���
since ��� and ��� are just numbers.14



Saving dual variables for equalities

Maximize �& + ?��
subject to��& − ��� = 7…� ≥ �

9′
9′′

9

Minimize 7(9�−9��) + …
subject to   �(9�−9��) + … ≥ &−�(9�−9��) + … ≥ ?9�, 9�� … ≥ �

Maximize �& + ?��
subject to��& − ��� ≤ 7−��& + ��� ≤ −7…� ≥ �Standard form 

conversion for

equality

Minimize 7 9 + …
subject to   �9 + … ≥ &−�9 + … ≥ ?… ≥ �

9� − 9�� can 

take on any 

real value

No requirement 

that 9 ≥ �

Dual

Dual

use direct conversion!
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Maximize A��
subject to�� ≤ B� ≥ �

1. A� = %& if � out of !� otherwise
2. �� ≤ �(�)
3. ∑ ���� ���� � − ∑ �� = � �� ��� �� �
4. � ≥ �

Dual of Max Flow

16

Use a different 

names to avoid 

confusion with 

capacity vector

9���

Minimize  ∑ � � 9��� ≡ ��9
subject to 

9� + �� ≥ & if � = (!, �)
9� − �C ≥ �  if � = C, #

9� − �C + �� ≥ �  if � = C, �
9 ≥ �  � ∈ D − {!, #} C, � ∈ D − {!, #}



More uniform way to write Max Flow Dual

Minimize  ∑ � � 9��� ≡ ��9
subject to 9� + �� ≥ & if � = (!, �)

9� − �C ≥ �  if � = C, #
9� − �C + �� ≥ �  if � = C, �

9 ≥ �  C, � ∈ D − {!, #}

Minimize  ∑ � � 9��� ≡ ��9
subject to �! = &�# = �

9� − �C + �� ≥ �  

for � = C, �
9 ≥ �  

Define�! = &�# = �
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Simpler to read Max Flow Dual

Minimize  ∑ � � 9��� ≡ ��9
subject to �! = &�# = �

9� − �C + �� ≥ �  

for � = C, �
9 ≥ �  

All the � � ≥ � , so 

we want the 9� as 

small as possible.

Minimize  ∑ � � 9��� ≡ ��9
subject to �! = &�# = �

9� = max(�C − ��, �)
for � = C, �
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Minimize ∑ � � 9��� ≡ ��9
subject to �! = &�# = �� ≤ �� ≤ &9� = max(�C − ��, �)

for � = C, �

�! = &

�# = �

Claim: Optimum is achieved with� ≤ �� ≤ & for every vertex �.
Proof:  

Move �� values between � and &
Reduces:9� = length if � is down

Doesn’t change:9� = � if � is up

Overall solution improves.
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Minimize ∑ � � 9��� ≡ ��9
subject to �! = &�# = �� ≤ �� ≤ &9� = max(�C − ��, �)

for � = C, �

�! = &

�# = �

Claim: Optimum is achieved with� ≤ �� ≤ & for every vertex �.
Proof:  

Move �� values between � and &
Reduces:9� = length if � is down

Doesn’t change:9� = � if � is up

Overall solution improves.
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Minimize ∑ � � 9��� ≡ ��9

subject to �! = &�# = �� ≤ �� ≤ &9� = max1�C � ��, �2
for � = C, �

�!  &

�#  �
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Minimize ∑ � � 9��� ≡ ��9

subject to �! = &�# = �� ≤ �� ≤ &9� = max1�C � ��, �2
for � = C, �

Claim: Optimum is achieved with�� = � or �� = & for every vertex �.

Proof:  

Choose uniform random H ∈ I�, &J

Set �� = %& if �� 	 H
� if �� K H

Expected value for random H is the 

same as the original since edge � of 

length 9� is cut w.p. 9�.

So... one of those random choices 

must be at least as good.

�! = &

�# = �
22



MinCut!

Minimize ∑ � � 9��� ≡ ��9

subject to �! = &�# = ��� ∈  �, &$
9�  max1�C � ��, �2

for � = C, �

�#  �

�!  &
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Duality of Shortest Paths

Minimize ∑ ���� 
subject to

∑ ���� ��� �� ! = & 
∑ ���� ���� # = &
∑ ���� ���� � − ∑ ���� ��� �� � = �

for all � ∈ � − !, #
� ≥ �
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Duality of Shortest Paths

Minimize ∑ ���� 

subject to

∑ ���� ���� ! � ∑ ��
�
� ��� �� !  �& 

∑ ��
�
� ���� # � ∑ ��

�
� ��� �� #  &

∑ ��
�
� ���� � � ∑ ��

�
� ��� �� �  �

for all � ∈ � � !, #

� 	 �
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9!
9#
9�

Maximize  9! − 9#
subject to 

9C − 9� ≤ &
if � = (C, �2  



Duality and Zero-Sum Games
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Two player zero-sum game:

An � × 
 matrix 44=,< = payoff to row player assuming: 

row player uses strategy =, and 

column player uses strategy <.

Column player’s payoff for game = −4=,<
Example: Chess (idealized)= specifies how white would move in every 

possible board configuration.< specifies how black would move.    

4=,< = M+& White checkmates−& Black checkmates� Draw on board

Randomized Strategy:

Probability distribution on row strategies:

• A column vector � with each �= ≥ �
� �= = &�

=
Probability distribution on column strategies:

• A column vector : with each :< ≥ �
� :< = &�

<
Expected payoff to row player:��4 :



Who decides on their strategy first
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If row player commits to �:

Row player will get payoff min:  ��4: = min< ��4 <
So if row player plays first they can get payoffmax� min:  ��4:
If column player commits to ::

Row player will get payoff max�  ��4: = max= 4 : =
So if column player plays first, row player can 

get payoff min: max�  ��4:

Randomized Strategy:

Probability distribution on row strategies:

• A column vector � with each �= ≥ �
� �= = &�

=
Probability distribution on column strategies:

• A column vector : with each :< ≥ �
� :< = &�

<
Expected payoff to row player:��4 :



Von Neumann’s MiniMax Theorem
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If row player commits to �:

Row player will get payoff min:  ��4: = min< ��4 <
So if row player plays first they can get payoffmax� min:  ��4:
If column player commits to ::

Row player will get payoff max�  ��4: = max= 4 : =
So if column player plays first, row player can 

get payoff min: max�  ��4:

It doesn’t matter who plays first!

Theorem:max� min:  ��4: = min:  max�  ��4:



Use Strong Duality to prove MiniMax Theorem

Theorem: max� min:  ��4: = min:  max�  ��4:
i.e., max � min< ��4 < = min:  max= 4 : =

Maximize W
subject to∑ �= = &  �=W − ��4 < ≤ �∗

for all <� ≥ �
:<
Y

Minimize Y
subject to∑ :< = &  �<Y − 4 : = ≥ �∗

for all =: ≥ �
Coefficient of W must be &
Coefficient of �= must be ≥ �

*equivalent to W ≤ min< ��4 < *equivalent to Y ≥ max= 4 : =

Primal Dual
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