SSE 421 Introduction to Algorithms

Lecture 21: Linear Programming Duality
lectore2t-f duselety pd

Given: a polytope
Find: the lowest point in the polytope Maximize $c^{\top} x$ subject to $A \boldsymbol{x} \leq \boldsymbol{b}$.

Typically \# constraints $\boldsymbol{m} \geq \boldsymbol{n}$
Lowest point is a vertex defined by some n rows, $A^{\prime} \boldsymbol{x}=b^{\prime}$

At maximum \boldsymbol{x}

$$
\left[\begin{array}{l}
A_{2} \\
A_{3}
\end{array}\right] x=\left[\begin{array}{l}
b_{2} \\
b_{3}
\end{array}\right]
$$

Max Flow in Standard Form LP

Minimization or Maximization

Minimize $\boldsymbol{c}^{\top} \boldsymbol{x}$
subject to
\[\begin{gathered} A x \geq b
x \geq 0 \end{gathered} \]

Shortest Paths

Given: Directed graph $G=(\boldsymbol{V}, \boldsymbol{E})$ vertices s, t in V

Find: shortest path from s to t
Claim: Length ℓ of the shortest path is the solution to this program.

Proof sketch: A shortest path yields a solution of cost ℓ. Optimal solution must be a combination of flows on shortest paths also cost ℓ; otherwise there is a part of the 1 unit of flow that gets counted on more than ℓ edges.

Minimize

subject to

Duality

b

$$
\begin{gathered}
2 x_{1}-x_{2}+3 x_{3} \leq 1 \\
-x_{1}+x_{2}-x_{3} \leq 5 \\
x \geq 0
\end{gathered}
$$

Claim: Optimum ≤ 6 Proof: Add the two LHS:

$$
\begin{aligned}
& 2 x_{1}-x_{2}+3 x_{3} \\
+\left(-x_{1}+x_{2}-x_{3}\right) & \leq 5 \\
=x_{1} & +2 x_{3} .
\end{aligned}
$$

Must be \leq sum of RHS $=6$.

We multiplied the 1st inequality by $a=1$, the $2^{\text {nd }}$ by $b=1$ and added.

Claim: For all $a, b \geq 0$ if

$$
\left[\begin{array}{l}
2 a-b \geq 1 \\
-a+b \geq 0 \\
3 a-b \geq 2
\end{array}\right.
$$

then Optimum $\leq a+5 b$

Proof:

$$
\begin{gathered}
x_{1} \\
\leq a\left(2 x_{1}-x_{2}+3 x_{3}\right) \\
+b\left(-x_{1}+x_{2}-x_{3}\right) \\
\leq 1 a+5 b .
\end{gathered}
$$

Duality

Maximize $x_{1}+2 x_{3}$
subject to
\(\begin{gathered}a

b

$$
\begin{array}{c}2 x_{1}-x_{2}+3 x_{3} \\
-x_{1}+x_{2}-x_{3}\end{array}
$$

x \geq 0\end{gathered} \leq\)| 1 |
| :--- |
| 5 |

Minimize $a+5 b$
subject to

$$
\begin{gathered}
\left\lvert\, \begin{array}{c}
2 a-b \\
-a+b \\
3 a-b
\end{array} \geq \geq \begin{array}{l}
1 \\
0 \\
2
\end{array}\right. \\
a, b \geq 0
\end{gathered}
$$

We multiplied the 1st inequality by $a=1$, the $2^{\text {nd }}$ by $b=1$ and added.

Claim: For all $a, b \geq 0$ if

$$
\begin{aligned}
& 2 a-b \geq 1 \\
& -a+b \geq 0 \\
& 3 a-b \geq 2
\end{aligned}
$$

then Optimum $\leq a+5 b$

$$
\text { Proof: } \begin{gathered}
x_{1}+2 x_{3} \\
\leq a\left(2 x_{1}-x_{2}+3 x_{3}\right) \\
+b\left(-x_{1}+x_{2}-x_{3}\right) \\
\leq 1 a+5 b
\end{gathered}
$$

Duality

Maximize $x_{1}+2 x_{3}$
subject to
a

$$
\begin{gathered}
2 x_{1}-x_{2}+3 x_{3} \leq 1 \\
-x_{1}+x_{2}-x_{3} \leq 5 \quad \text { primal } \\
x \geq 0
\end{gathered}
$$

Minimize $a+5 b$
subject to

$$
\begin{gathered}
2 a-b \geq 1 \\
-a+b \geq 0 \\
3 a-b \geq 2 \\
a, b \geq 0
\end{gathered}
$$

We multiplied the 1st inequality by $a=1$, the $2^{\text {nd }}$ by $b=1$ and added.

Claim: For all $a, b \geq 0$ if

$$
\begin{aligned}
& 2 a-b \geq 1 \\
& -a+b \geq 0 \\
& 3 a-b \geq 2
\end{aligned}
$$

then Optimum $\leq \boldsymbol{a}+5 \boldsymbol{b}$

$$
\text { Proof: } \begin{gathered}
x_{1}+2 x_{3} \\
\leq a\left(2 x_{1}-x_{2}+3 x_{3}\right) \\
+b\left(-x_{1}+x_{2}-x_{3}\right) \\
\leq 1 a+5 b
\end{gathered}
$$

Duality

Maximize $x_{1}+2 x_{3}$
subject to
a

$$
\begin{gathered}
2 x_{1}-x_{2}+3 x_{3} \leq 1 \\
-x_{1}+x_{2}-x_{3} \leq 5 \quad \text { primal } \\
x \geq 0
\end{gathered}
$$

Maximize $-a-5 b$
subject to

$$
\begin{gathered}
-2 a+b \leq-1 \\
a-b \leq 0 \\
-3 a+b \leq-2 \\
a, b \geq 0
\end{gathered}
$$

We multiplied the 1st inequality by $a=1$, the $2^{\text {nd }}$ by $b=1$ and added.

Claim: For all $a, b \geq 0$ if

$$
\begin{aligned}
& 2 a-b \geq 1 \\
& -a+b \geq 0 \\
& 3 a-b \geq 2
\end{aligned}
$$

then Optimum $\leq \boldsymbol{a}+\mathbf{5 b}$

$$
\text { Proof: } \begin{gathered}
x_{1}+2 x_{3} \\
\leq a\left(2 x_{1}-x_{2}+3 x_{3}\right) \\
+b\left(-x_{1}+x_{2}-x_{3}\right) \\
\leq 1 a+5 b
\end{gathered}
$$

Duality

Maximize $x_{1}+2 x_{3}$ subject to

$$
\begin{array}{cc}
a & 2 x_{1}-x_{2}+3 x_{3} \leq 1 \\
b & -x_{1}+x_{2}-x_{3} \leq 5 \quad \text { primal } \\
& x \geq 0
\end{array}
$$

Maximize -a-5b
subject to

$$
\begin{array}{cc}
y_{1} & -2 a+b \leq-1 \\
y_{2} & a-b \leq 0 \\
y_{3} & -3 a+b \leq-2 \\
& a, b \geq 0
\end{array}
$$

dual
What is the dual of the dual?
Minimize $-1 y_{1}-2 y_{3}$
subject to

$$
\begin{aligned}
&-2 y_{1}+y_{2}-3 y_{3} \geq-1 \\
& y_{1}-y_{2}+y_{3} \geq-5 \\
& y \geq 0
\end{aligned}
$$

equivalent to
Maximize $\quad y_{1}+2 y_{3}$ subject to

$$
\begin{gathered}
2 y_{1}-y_{2}+3 y_{3} \leq 1 \\
-y_{1}+y_{2}-y_{3} \leq 5 \\
y \geq 0
\end{gathered}
$$

Duality

$\left\{\begin{array}{cc|}\text { primal } & \text { dual } \\ \text { Maximize } c^{\top} \boldsymbol{x} & \text { Minimize } b^{\top} y \\ \text { subject to } \sigma & \text { subject to } \\ A x \leq b & A^{\top} y \geq c \\ x \geq 0 & y \geq 0\end{array}\right.$

Theorem: The dual of the dual is the primal. Proof:

$$
\begin{array}{lr}
\text { dual of dual } & \text { dual of dual } \\
\text { Minimize }(-\boldsymbol{c})^{\top} \boldsymbol{x} & \text { Minimize }-\boldsymbol{c}^{\top} \boldsymbol{x} \\
\text { subject to } & \text { subject to } \\
\left((-\boldsymbol{A})^{\top}\right)^{\top} \boldsymbol{x} \geq(-\boldsymbol{b})^{\top} & -\boldsymbol{A} \boldsymbol{x} \geq-\boldsymbol{b}^{\top} \\
\boldsymbol{x} \geq \mathbf{0} & \boldsymbol{x} \geq \mathbf{0}
\end{array}
$$

dual
Maximize $(-b)^{\top} y$ subject to

$$
\begin{gathered}
(-A)^{\top} y \leq-c \\
y \geq 0
\end{gathered}
$$

dual of dual
Maximize $\boldsymbol{c}^{\top} \boldsymbol{x}$
subject to

$$
\begin{aligned}
\boldsymbol{A} \boldsymbol{x} & \leq \boldsymbol{b}^{\top} \\
\boldsymbol{x} & \geq \mathbf{0}
\end{aligned}
$$

Duality

primal	dual
Maximize $\boldsymbol{c}^{\top} \boldsymbol{x}$	Minimize $\boldsymbol{b}^{\top} \boldsymbol{y}$
subject to	subject to
$\boldsymbol{A x} \leq \boldsymbol{b}$	$\boldsymbol{A}^{\top} \boldsymbol{y} \geq \boldsymbol{c}$
$\boldsymbol{x} \geq \mathbf{0}$	$\boldsymbol{y} \geq \mathbf{0}$

Theorem: The dual of the dual is the primal.
Theorem (Weak Duality): Every solution to primal has a value that is at most that of every solution to dual.

Proof: We constructed the dual to give upper bounds on the primal.

Duality

primal
Maximize $c^{\top} \boldsymbol{x}$
subject to

$$
A x \leq b
$$

$$
x \geq 0
$$

dual
Minimize $b^{\top} y$
subject to
$A^{\top} y \geq c$
$y \geq 0$

Theorem: The dual of the dual is the primal.
Theorem (Weak Duality): Every solution to primal has a value that is at most that of every solution to dual.

Theorem (Strong Duality): If primal has a solution of finite value, then that value is equal to optimal solution of dual.

Duality

primal

Maximize $c^{\top} \boldsymbol{x}$ subject to
$A x \leq b$

$$
x \geq 0
$$

Minimize $b^{\top} y$ subject to $A^{\top} y \geq c$

$$
y \geq 0
$$

Theorem (Strong Duality): If primal has a solution of finite value, then that value is equal to optimal solution of dual.

Fact: At vertex, \boldsymbol{n}

E.g. there are $y_{i}, y_{j} \geq 0$ s.t. $y_{i} A_{i}+y_{j} A_{j}=c^{\top}$.

Set y_{k} for all other rows to 0 , get $y^{\prime \top} A=y^{\prime} A^{\prime}=c^{\top}$

$$
\text { so } A^{\top} y=c \text {. }
$$

$$
\begin{aligned}
\text { Then } b^{\top} y \neq\left(b^{\prime}\right)^{\top} y^{\prime} & =\left(\boldsymbol{A}^{\prime} \boldsymbol{x}\right)^{\top} y^{\prime}=x^{\top}\left(A^{\prime}\right)^{\top} y^{\prime}=x^{\top} \boldsymbol{A}^{\top} y \\
& =x^{\top} \boldsymbol{c}=c^{\top} x
\end{aligned}
$$

since $\boldsymbol{x}^{\top} \boldsymbol{c}$ and $\boldsymbol{c}^{\top} \boldsymbol{x}$ are just numbers.

Saving dual variables for equalities

Maximize $x_{1}+4 x_{2}$ subject to
a

$$
3 x_{1}-2 x_{2}=5
$$

Minimize $5\left(a^{\prime}-a^{\prime \prime}\right)+\ldots$
subject to

$$
\begin{array}{cl}
\mathbf{3}\left(\boldsymbol{a}^{\prime}-\boldsymbol{a}^{\prime \prime}\right)+\ldots \geq \mathbf{1} & \boldsymbol{a}^{\prime}-\boldsymbol{a}^{\prime \prime} \text { can } \\
-\mathbf{2}\left(\boldsymbol{a}^{\prime}-\boldsymbol{a}^{\prime \prime}\right)+\ldots \geq \mathbf{4} & \text { take on any } \\
\left(\boldsymbol{a}^{\prime}, \boldsymbol{a}^{\prime \prime} \ldots \geq \mathbf{0}\right. & \text { real value }
\end{array}
$$

Minimize $5 a+\ldots$
subject to
Dual

$$
\begin{array}{cc}
& -2 a+\ldots \geq 4 \\
x \geq 0 & \text { use direct conversion! } \\
\ldots \geq 0
\end{array}
$$

Dual of Max Flow

Maximize $g^{\top} x$ subject to
$$
A x \leq h
$$
$$
x \geq \mathbf{0}
$$

1. $g_{e}= \begin{cases}1 & \text { if } e \text { out of } s \\ 0 & \text { otherwise }\end{cases}$
a_{e} 2. $x_{e} \leq c(e)$
\boldsymbol{b}_{v} 3. $\sum_{e \text { into } v} x_{e}-\sum_{e \text { out of } v} x_{e}=\mathbf{0}$
2. $x \geq 0$

$$
v \in S-\{s, t\}
$$

Minimize $\sum_{e} c(e) a_{e} \equiv c^{\top} a$ subject to

$$
a_{e}+b_{v} \geq 1 \text { if } e=(s, v)
$$

$$
\boldsymbol{a}_{\boldsymbol{e}}-\boldsymbol{b}_{\boldsymbol{u}} \geq \mathbf{0} \text { if } \boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{t})
$$

$$
a_{e}-b_{u}+b_{v} \geq 0 \text { if } e=(u, v)
$$

$$
\boldsymbol{a} \geq \mathbf{0} \quad u, v \in S-\{s, t\}
$$

More uniform way to write Max Flow Dual

Minimize $\sum_{e} c(e) a_{e} \equiv c^{\top} a$
subject to

$$
\begin{aligned}
& \boldsymbol{a}_{\boldsymbol{e}}+\boldsymbol{b}_{v} \geq \mathbf{1} \text { if } \boldsymbol{e}=(\boldsymbol{s}, v) \\
& \boldsymbol{a}_{\boldsymbol{e}}-\boldsymbol{b}_{u} \geq \mathbf{0} \text { if } \boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{t}) \\
& \boldsymbol{a}_{\boldsymbol{e}}-\boldsymbol{b}_{u}+\boldsymbol{b}_{v} \geq \mathbf{0} \begin{array}{l}
\text { Define } \\
\boldsymbol{b}_{s}=\mathbf{1} \\
\boldsymbol{b}_{t}=\mathbf{0}
\end{array} \\
& \boldsymbol{a} \geq=(u, v) \\
& \quad u, v \in S-\{s, t\}
\end{aligned}
$$

Minimize $\sum_{e} c(e) a_{e} \equiv c^{\top} a$ subject to

$$
\begin{aligned}
& b_{s}=\mathbf{1} \\
& b_{t}=\mathbf{0}
\end{aligned}
$$

$$
\begin{gathered}
\boldsymbol{a}_{\boldsymbol{e}}-\boldsymbol{b}_{\boldsymbol{u}}+\boldsymbol{b}_{v} \geq \mathbf{0} \\
\text { for } \boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v}) \\
\boldsymbol{a} \geq \mathbf{0}
\end{gathered}
$$

Simpler to read Max Flow Dual

Minimize $\sum_{e} c(e) a_{e} \equiv c^{\top} a$
subject to

$$
\begin{gathered}
b_{s}=\mathbf{1} \\
b_{t}=\mathbf{0} \\
\boldsymbol{a}_{\boldsymbol{e}}-b_{u}+b_{v} \geq \mathbf{0} \\
\text { for } e=(u, v) \\
\boldsymbol{a} \geq \mathbf{0}
\end{gathered}
$$

Minimize $\sum_{e} c(e) a_{e} \equiv c^{\top} a$ subject to

$$
\begin{gathered}
b_{s}=\mathbf{1} \\
b_{t}=\mathbf{0} \\
\boldsymbol{a}_{\boldsymbol{e}}=\max \left(\boldsymbol{b}_{\boldsymbol{u}}-\boldsymbol{b}_{\boldsymbol{v}}, \mathbf{0}\right) \\
\text { for } \boldsymbol{e}=(\boldsymbol{u}, v)
\end{gathered}
$$

Minimize

$$
\sum_{e} c(e) a_{e} \equiv c^{\top} a
$$ subject to

$$
\begin{aligned}
b_{s} & =1 \\
b_{t} & =0
\end{aligned}
$$

$$
\begin{gathered}
\boldsymbol{a}_{\boldsymbol{e}}=\max \left(\boldsymbol{b}_{\boldsymbol{u}}-\boldsymbol{b}_{\boldsymbol{v}}, \mathbf{0}\right) \\
\text { for } \boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v})
\end{gathered}
$$

Claim: Optimum is achieved with $\mathbf{0} \leq \boldsymbol{b}_{\boldsymbol{v}} \leq \mathbf{1}$ for every vertex \boldsymbol{v}.

Proof:

Move \boldsymbol{b}_{v} values between $\mathbf{0}$ and $\mathbf{1}$ Reduces:
$\boldsymbol{a}_{\boldsymbol{e}}=$ length if \boldsymbol{e} is down Doesn't change:
$\boldsymbol{a}_{\boldsymbol{e}}=\mathbf{0}$ if \boldsymbol{e} is up Overall solution improves.

Minimize

$$
\sum_{e} c(e) a_{e} \equiv c^{\top} a
$$ subject to

$$
\begin{gathered}
\boldsymbol{b}_{s}=\mathbf{1} \\
\boldsymbol{b}_{\boldsymbol{t}}=\mathbf{0} \\
\mathbf{0} \leq \boldsymbol{b}_{v} \leq \mathbf{1} \\
\boldsymbol{a}_{\boldsymbol{e}}=\max \left(\boldsymbol{b}_{\boldsymbol{u}}-\boldsymbol{b}_{v}, \mathbf{0}\right) \\
\text { for } \boldsymbol{e}=(\boldsymbol{u}, v)
\end{gathered}
$$

Claim: Optimum is achieved with $\mathbf{0} \leq \boldsymbol{b}_{\boldsymbol{v}} \leq \mathbf{1}$ for every vertex \boldsymbol{v}.

Proof:

Move \boldsymbol{b}_{v} values between $\mathbf{0}$ and $\mathbf{1}$ Reduces:
$\boldsymbol{a}_{\boldsymbol{e}}=$ length if \boldsymbol{e} is down Doesn't change:
$\boldsymbol{a}_{\boldsymbol{e}}=\mathbf{0}$ if \boldsymbol{e} is up Overall solution improves.

Minimize

$$
\sum_{e} c(e) a_{e} \equiv c^{\top} a
$$

subject to

$$
\begin{gathered}
\boldsymbol{b}_{s}=\mathbf{1} \\
\boldsymbol{b}_{\boldsymbol{t}}=\mathbf{0} \\
\mathbf{0} \leq \boldsymbol{b}_{v} \leq \mathbf{1} \\
\boldsymbol{a}_{\boldsymbol{e}}=\max \left(\boldsymbol{b}_{\boldsymbol{u}}-\boldsymbol{b}_{v}, \mathbf{0}\right) \\
\text { for } \boldsymbol{e}=(\boldsymbol{u}, v)
\end{gathered}
$$

Minimize

$$
\sum_{e} c(e) a_{e} \equiv c^{\top} a
$$ subject to

$$
\begin{gathered}
\boldsymbol{b}_{s}=\mathbf{1} \\
\boldsymbol{b}_{\boldsymbol{t}}=\mathbf{0} \\
\mathbf{0} \leq \boldsymbol{b}_{v} \leq \mathbf{1} \\
\boldsymbol{a}_{\boldsymbol{e}}=\max \left(\boldsymbol{b}_{\boldsymbol{u}}-\boldsymbol{b}_{v}, \mathbf{0}\right) \\
\text { for } \boldsymbol{e}=(\boldsymbol{u}, v)
\end{gathered}
$$

Claim: Optimum is achieved with $\boldsymbol{b}_{\boldsymbol{v}}=\mathbf{0}$ or $\boldsymbol{b}_{\boldsymbol{v}}=\mathbf{1}$ for every vertex \boldsymbol{v}.

Proof:

Choose uniform random $r \in[\mathbf{0}, \mathbf{1}]$
Set $\boldsymbol{b}_{\boldsymbol{v}}= \begin{cases}\boldsymbol{1} & \text { if } \boldsymbol{b}_{\boldsymbol{v}} \geq \boldsymbol{r} \\ \mathbf{0} & \text { if } \boldsymbol{b}_{\boldsymbol{v}}<\boldsymbol{r}\end{cases}$
Expected value for random \boldsymbol{r} is the same as the original since edge \boldsymbol{e} of length $\boldsymbol{a}_{\boldsymbol{e}}$ is cut w.p. $\boldsymbol{a}_{\boldsymbol{e}}$. So... one of those random choices must be at least as good.

Minimize

$$
\sum_{e} c(e) a_{e} \equiv c^{\top} a
$$

subject to

$$
b_{s}=1
$$

$$
b_{t}=0
$$

$$
b_{v} \in\{0,1\}
$$

$$
\boldsymbol{a}_{\boldsymbol{e}}=\max \left(\boldsymbol{b}_{\boldsymbol{u}}-\boldsymbol{b}_{v}, \mathbf{0}\right)
$$

$$
\text { for } \boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v})
$$

$$
b_{s}=1
$$

MinCut!

Duality of Shortest Paths

$$
\begin{aligned}
& \text { Minimize } \sum_{e} x_{e} \\
& \text { subject to } \\
& \sum_{e \text { out of } s} x_{e}=1 \\
& \sum_{e \text { into } t} x_{e}=1 \\
& \begin{array}{l}
\sum_{e \text { into } v} x_{e}-\sum_{e \text { out of } v} x_{e}=0 \\
\quad \text { for all } v \in V-\{s, t\} \\
x \geq 0
\end{array}
\end{aligned}
$$

Duality of Shortest Paths

Minimize $\sum_{e} \boldsymbol{x}_{\boldsymbol{e}}$

subject to

$$
\boldsymbol{a}_{s} \sum_{e \text { into } s} x_{e}-\sum_{e \text { out of } s} x_{e}=-\mathbf{1}
$$

Maximize $a_{s}-a_{t}$ subject to

$$
a_{t} \sum_{e \text { into } t} x_{e}-\sum_{e \text { out of } t} x_{e}=\mathbf{1}
$$

$$
\begin{aligned}
& \boldsymbol{a}_{\boldsymbol{u}}-\boldsymbol{a}_{\boldsymbol{v}} \leq \mathbf{1} \\
& \text { if } \boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{v})
\end{aligned}
$$

$$
\boldsymbol{a}_{v} \sum_{e \text { into } v} x_{e}-\sum_{e \text { out of } v} x_{e}=\mathbf{0}
$$

$$
\text { for all } v \in V-\{s, t\}
$$

$$
x \geq 0
$$

Duality and Zero-Sum Games

Two player zero-sum game:

An $m \times n$ matrix G
$G_{i, j}=$ payoff to row player assuming: row player uses strategy i, and column player uses strategy j.
Column player's payoff for game $=-G_{i, j}$
Example: Chess (idealized)
i specifies how white would move in every possible board configuration.
j specifies how black would move.

$$
G_{i, j}=\left\{\begin{array}{cc}
+\mathbf{1} & \text { White checkmates } \\
-\mathbf{1} & \text { Black checkmates } \\
\mathbf{0} & \text { Draw on board }
\end{array}\right.
$$

Randomized Strategy:

Probability distribution on row strategies:

- A column vector x with each $x_{i} \geq 0$

$$
\sum_{i} x_{i}=1
$$

Probability distribution on column strategies:

- A column vector y with each $y_{j} \geq 0$

$$
\sum_{j} y_{j}=1
$$

Expected payoff to row player:

$$
x^{\top} \boldsymbol{G} \boldsymbol{y}
$$

Who decides on their strategy first

If row player commits to x :
Row player will get payoff

$$
\min _{\boldsymbol{y}} \boldsymbol{x}^{\top} \boldsymbol{G} \boldsymbol{y}=\min _{\boldsymbol{j}}\left(\boldsymbol{x}^{\top} \boldsymbol{G}\right)_{\boldsymbol{j}}
$$

So if row player plays first they can get payoff

$$
\max _{x} \min _{\boldsymbol{y}} \boldsymbol{x}^{\top} \boldsymbol{G} \boldsymbol{y}
$$

If column player commits to y :
Row player will get payoff

$$
\max _{x} \boldsymbol{x}^{\top} \boldsymbol{G} \boldsymbol{y}=\max _{\boldsymbol{i}}(\boldsymbol{G} \boldsymbol{y})_{i}
$$

So if column player plays first, row player can get payoff

$$
\min _{\boldsymbol{y}} \max _{\boldsymbol{x}} \boldsymbol{x}^{\top} \boldsymbol{G} \boldsymbol{y}
$$

Randomized Strategy:

Probability distribution on row strategies:

- A column vector x with each $x_{i} \geq 0$

$$
\sum_{i} x_{i}=1
$$

Probability distribution on column strategies:

- A column vector y with each $y_{j} \geq 0$

$$
\sum_{j} y_{j}=1
$$

Expected payoff to row player:

$$
x^{\top} \boldsymbol{G} y
$$

Von Neumann's MiniMax Theorem

If row player commits to x :
Row player will get payoff

$$
\min _{y} x^{\top} G y=\min _{j}\left(x^{\top} G\right)_{j}
$$

So if row player plays first they can get payoff

$$
\max _{x} \min _{y} x^{\top} G y
$$

If column player commits to y :
Row player will get payoff

$$
\max _{x} x^{\top} \boldsymbol{G} y=\max _{i}(\boldsymbol{G} y)_{i}
$$

So if column player plays first, row player can get payoff

$$
\min _{y} \max _{x} x^{\top} G y
$$

It doesn't matter who plays first!

Theorem:
$\max _{\boldsymbol{x}} \min _{\boldsymbol{y}} \boldsymbol{x}^{\top} \boldsymbol{G} \boldsymbol{y}=\min _{\boldsymbol{y}} \max _{\boldsymbol{x}} \boldsymbol{x}^{\top} \boldsymbol{G} \boldsymbol{y}$

Use Strong Duality to prove MiniMax Theorem

Theorem: $\max _{x} \min _{y} x^{\top} G y=\min _{y} \max _{x} x^{\top} G y$

$$
\text { i.e., } \max _{x} \min _{j}\left(x^{\top} G\right)_{j}=\min _{y} \max _{i}(G y)_{i}
$$

Primal

Maximize z

subject to

$$
\left\{\begin{array}{cc}
w & \sum_{i} x_{i}=1 \\
y_{j} & z-\left(x^{\top} G\right)_{j} \leq 0^{*} \\
& \text { for all } j \\
x \geq 0
\end{array}\right.
$$

*equivalent to $\boldsymbol{z} \leq \min _{\boldsymbol{j}}\left(\boldsymbol{x}^{\top} \boldsymbol{G}\right)_{\boldsymbol{j}}$

Dual
Minimize w
subject to

$$
\begin{aligned}
& \qquad \sum_{j} y_{j}=\mathbf{1} \quad \text { Coefficient of } z \text { must be } \mathbf{1} \\
& \boldsymbol{w}-(\boldsymbol{G} \boldsymbol{y})_{\boldsymbol{i}} \geq \mathbf{0}^{*} \text { Coefficient of } \boldsymbol{x}_{\boldsymbol{i}} \text { must be } \geq \mathbf{0} \\
& \text { for all } \boldsymbol{i} \\
& \boldsymbol{y} \geq \mathbf{0} \\
& \text { *equivalent to } \boldsymbol{w} \geq \max _{\boldsymbol{i}}(\boldsymbol{G} \boldsymbol{y})_{\boldsymbol{i}}
\end{aligned}
$$

