CSE 421 Introduction to Algorithms

Lecture 20: Linear Programming:
A really very extremely big hammer

Given: a polytope
Find: the lowest point in the polytope

Given: a polytope
Find: the lowest point in the polytope

We have fast

 algorithms for this!

Maximize $z_{1}+2 z_{3}$ subject to:

$$
\begin{array}{r}
2 z_{1}-z_{2}+3 z_{3} \leq 1 \\
-z_{1}+z_{2}-z_{3} \leq 5
\end{array}
$$

Linear Algebra primer

For $a, x \in \mathbb{R}^{n}$ we think of a and x as column vectors

$$
a^{\top} x=a_{1} x_{1}+\cdots+a_{n} x_{n}
$$

The set of x satisfying $a^{\top} x=0$ is hyperplane

Given: a polytope
Find: the lowest point in the polytope

Linear Algebra primer

For $a, x \in \mathbb{R}^{n}$ we think of a and x as column vectors

$$
a^{\top} x=a_{1} x_{1}+\cdots+a_{n} x_{n}
$$

Write $m \times n$ matrix A, for $A x=\left[\begin{array}{c}A_{1} x \\ A_{2} x \\ A_{3} x \\ \ldots \\ A_{m} x\end{array}\right]$ where A_{1}, \ldots, A_{n} are rows of A.

Given: a polytope
Find: the lowest point in the polytope

Maximize $c^{\top} x$ subject to $A x \leq b$.
$A x \leq b$ means
$(A x)_{i} \leq b_{i}$
for all i

Given: a polytope
Find: the lowest point in the polytope
 subject to

$$
A x \leq b
$$

Typically \# constraints $\boldsymbol{m} \geq \boldsymbol{n}$
Lowest point is a vertex defined by some n rows, $\boldsymbol{A}^{\prime} \boldsymbol{x}=b^{\prime}$
$A_{1} x \leq b_{1} \quad$ At maximum x

$$
\left[\begin{array}{l}
A_{2} \\
A_{3}
\end{array}\right] x=\left[\begin{array}{l}
b_{2} \\
b_{3}
\end{array}\right]
$$

Standard Form

Maximize $c^{\top} \boldsymbol{x}$
subject to

$$
\begin{gathered}
A x \leq b \\
x \geq 0
\end{gathered}
$$

Maximize $z_{1}+2 z_{3}$ subject to

$$
\begin{aligned}
2 z_{1}-z_{2}+3 z_{3} & \leq 1 \\
-z_{1}+z_{2}-z_{3} & \leq 5
\end{aligned}
$$

$$
\begin{aligned}
& \text { replace each } z_{i} \text { by } \\
& \boldsymbol{x}_{i, a}-\boldsymbol{x}_{i, b} \\
& \text { for } \boldsymbol{x}_{i, a} \boldsymbol{x}_{i, b} \geq \mathbf{0}
\end{aligned}
$$

Maximize $\left(x_{1, a}-x_{1, b}\right)+2\left(x_{3, a}-x_{3, b}\right)$
subject to

$$
\begin{gathered}
2\left(x_{1, a}-x_{1, b}\right)-\left(x_{2, a}-x_{2, b}\right)+3\left(x_{3, a}-x_{3, b}\right) \leq 1 \\
-\left(x_{1, a}-x_{1, b}\right)+\left(x_{2, a}-x_{2, b}\right)-\left(x_{3, a}-x_{3, b}\right) \leq 5 \\
x \geq 0
\end{gathered}
$$

Max Flow

Given: A Flow Network $G=(\boldsymbol{V}, \boldsymbol{E})$ with source $s, \operatorname{sink} t$, and $c: E \rightarrow \mathbb{R}^{\geq 0}$

Maximize flow out of s
subject to

- respecting capacities
- flow conservation at internal nodes

LP Variables:

x_{e} for each $e \in E$ representing flow on edge e

Maximize

$$
\sum_{e \text { out of } s} x_{e}
$$

subject to
$\mathbf{0} \leq \boldsymbol{x}_{\boldsymbol{e}} \leq \boldsymbol{c}(\boldsymbol{e})$ for every $\boldsymbol{e} \in E$
$\sum_{e \text { out of } v} x_{e}=\sum_{e \text { into } v} x_{e}$
for every node $\boldsymbol{v} \in \boldsymbol{V}-\{\boldsymbol{s}, \boldsymbol{t}\}$

Max Flow

Minimization or Maximization

Minimize $\boldsymbol{c}^{\top} \boldsymbol{x}$
subject to
\[\begin{gathered} A x \geq b
x \geq 0 \end{gathered} \]

Shortest Paths

Given: Directed graph $G=(\boldsymbol{V}, \boldsymbol{E})$ vertices s, t in V

Find: shortest path from s to t
Claim: Length ℓ of the shortest path is the solution to this program.

Proof sketch: A shortest path yields a solution of cost ℓ. Optimal solution must be a combination of flows on shortest paths also cost ℓ; otherwise there is a part of the 1 unit of flow that gets counted on more than ℓ edges.

Minimize

subject to

Shortest Paths

Given: Directed graph $G=(\boldsymbol{V}, \boldsymbol{E})$ vertices s, t in V

Find: shortest path from s to t
Claim: Length ℓ of the shortest path is the solution to this program.

Proof sketch: A shortest path yields a solution of cost ℓ. Optimal solution must be a combination of flows on shortest paths, also cost ℓ; otherwise parts of the 1 unit of flow that gets counted on more than ℓ edges.

Vertex Cover

Given: Undirected graph $G=(\boldsymbol{V}, \boldsymbol{E})$
Find: smallest set of vertices touching all edges of G.

Doesn't work: To define a set we need

$$
\boldsymbol{x}_{\boldsymbol{v}}=\mathbf{0} \text { or } \boldsymbol{x}_{\boldsymbol{v}}=\mathbf{1}
$$

Natural Variables for LP:

x_{v} for each $v \in V$
Minimize $\sum_{v} x_{v}$
subject to

$$
\mathbf{0} \leq \boldsymbol{x}_{\boldsymbol{v}} \leq \mathbf{1} \text { for each node } \boldsymbol{v} \in \boldsymbol{V}
$$

$$
\boldsymbol{x}_{\boldsymbol{u}}+\boldsymbol{x}_{\boldsymbol{v}} \geq \mathbf{1} \text { for each edge }\{\boldsymbol{u}, \boldsymbol{v}\} \in E
$$

This LP optimizes for a different problem: "fractional vertex cover".
$\boldsymbol{x}_{\boldsymbol{v}}$ indicates the fraction of vertex \boldsymbol{v} that is chosen in the cover.

What makes Max Flow different?

For Vertex Cover we only got a fractional optimum but for Max Flow can get integers.

- Why?
- Ford-Fulkerson analysis tells us this for Max Flow.
- Is there a reason we can tell just from the LP view?

Recall: Optimum is at some vertex x satisfying $A^{\prime} x=b^{\prime}$ for some subset of exactly n constraints.
This means that $x=\left(A^{\prime}\right)^{-1} b^{\prime}$.
Entries of the matrix inverse are quotients of determinants of sub-matrices of A^{\prime} so, for integer inputs, optimum is always rational.

Fact: Every full rank submatrix of MaxFlow matrix A has determinant ± 1
\Rightarrow all denominators are $\pm 1 \Rightarrow$ integers.
A is "totally unimodular"
Next: How MaxFlow=MinCut is an example of a general "duality" property of LPs

