CSE 421 Introduction to Algorithms

Lecture 20: Linear Programming: A really very extremely big hammer

Given: a polytope

Find: the *lowest* point in the polytope

Given: a polytope

Find: the *lowest* point in the polytope

Linear Algebra primer

For $a, x \in \mathbb{R}^n$ we think of a and x as column vectors

 $a^{\top}x = a_1x_1 + \dots + a_nx_n$

The set of x satisfying $a^{\top}x = 0$ is hyperplane

Given: a polytope

Find: the *lowest* point in the polytope

Linear Algebra primer

For $a, x \in \mathbb{R}^n$ we think of a and x as column vectors

 $a^{\top}x = a_1x_1 + \dots + a_nx_n$

Write
$$m \times n$$
 matrix A , for $Ax = \begin{bmatrix} A_1 x \\ A_2 x \\ A_3 x \\ \dots \\ A_m x \end{bmatrix}$ where A_1, \dots, A_n are rows of A .

Standard Form

Maximize $c^{\top}x$ subject to $Ax \le b$ $x \ge 0$

Maximize $z_1 + 2z_3$ subject to $2z_1 - z_2 + 3z_3 \leq 1$ $-z_1 + z_2 - z_3 \leq 5$ replace each z_i by $x_{i,a} - x_{i,b}$ for $x_{i,a}, x_{i,b} \ge 0$ Maximize $(x_{1,a} - x_{1,b}) + 2(x_{3,a} - x_{3,b})$ subject to $2(x_{1,a} - x_{1,b}) - (x_{2,a} - x_{2,b}) + 3(x_{3,a} - x_{3,b}) \le 1$ -(x_{1,a} - x_{1,b}) + (x_{2,a} - x_{2,b}) - (x_{3,a} - x_{3,b}) \le 5 x > 0

Max Flow

Given: A Flow Network G = (V, E) with source *s*, sink *t*, and $c: E \to \mathbb{R}^{\geq 0}$

Maximize flow out of s

subject to

- respecting capacities
- flow conservation at internal nodes

LP Variables:

 x_e for each $e \in E$ representing flow on edge e

Maximize subject to

$$\sum_{e \text{ out of } s} x_e$$

 $0 \le x_e \le c(e)$ for every $e \in E$

$$\sum_{e \text{ out of } v} x_e = \sum_{e \text{ into } v} x_e$$

for every node $v \in V - \{s, t\}$

Max Flow

Maximize

subject to

 $0 \le x_e \le c(e)$ for every $e \in E$

 $\sum_{e \text{ out of } v} x_e = \sum_{e \text{ into } v} x_e$

for every node $v \in V - \{s, t\}$

Replace equality constraints by a pair of inequalities

Maximize $c^{\top}x$ subject to $Ax \leq b$ $x \ge 0$ This is for the *c* above. Nothing to do with capacities! 1. $c_e = \begin{cases} 1 & \text{if } e \text{ out of } s \\ 0 & \text{otherwise} \end{cases}$ 2. $x_e \leq c(e)$ $\sum_{e \text{ out of } v} x_e - \sum_{e \text{ into } v} x_e \leq 0$ 3. 4. $\sum_{e \text{ into } v} x_e - \sum_{e \text{ out of } v} x_e \le 0$ 5. $x \ge 0$

Minimization or Maximization

Minimize $c^{\top}x$ subject to $Ax \ge b$ $x \ge 0$

Maximize $(-c)^{\top}x$ subject to $(-A)x \le (-b)$ $x \ge 0$

Shortest Paths

Given: Directed graph G = (V, E)vertices *s*, *t* in *V*

Find: shortest path from s to t

Claim: Length ℓ of the shortest path is the solution to this program.

Proof sketch: A shortest path yields a solution of cost ℓ . Optimal solution must be a combination of flows on shortest paths also cost ℓ ; otherwise there is a part of the **1** unit of flow that gets counted on more than ℓ edges.

Shortest Paths

Given: Directed graph G = (V, E)vertices *s*, *t* in *V*

Find: shortest path from s to t

Claim: Length ℓ of the shortest path is the solution to this program.

Proof sketch: A shortest path yields a solution of cost ℓ . Optimal solution must be a combination of flows on shortest paths, also cost ℓ ; otherwise parts of the **1** unit of flow that gets counted on more than ℓ edges.

Vertex Cover

Given: Undirected graph G = (V, E)

Find: smallest set of vertices touching all edges of **G**.

Doesn't work: To define a set we need $x_v = \mathbf{0}$ or $x_v = \mathbf{1}$

Natural Variables for LP:

 x_v for each $v \in V$

Minimize $\sum_{v} x_{v}$ subject to $0 \le x_{v} \le 1$ for each node $v \in V$

 $x_u + x_v \ge 1$ for each edge $\{u, v\} \in E$

This LP optimizes for a different problem: "fractional vertex cover". x_v indicates the fraction of vertex v that is chosen in the cover.

What makes Max Flow different?

For Vertex Cover we only got a fractional optimum but for Max Flow can get integers.

- Why?
 - Ford-Fulkerson analysis tells us this for Max Flow.
 - Is there a reason we can tell just from the LP view?
- **Recall:** Optimum is at some vertex x satisfying A'x = b' for some subset of exactly n constraints.

This means that $\mathbf{x} = (\mathbf{A}')^{-1}\mathbf{b}'$.

Entries of the matrix inverse are quotients of determinants of sub-matrices of A' so, for integer inputs, optimum is always rational.

Fact: Every full rank submatrix of MaxFlow matrix A has determinant ± 1

 \Rightarrow all denominators are $\pm 1 \Rightarrow$ integers. *A* is "totally unimodular"

Next: How **MaxFlow=MinCut** is an example of a general "duality" property of LPs