CSE 421
Introduction to Algorithms

Lecture 20: Linear Programming:
A really very extremely big hammer
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Midterm

Midterm grades will be released at the end of this class.
 Breathe!
* These grades don’t count for that much.

* |In past 421 I’ve had a student with a midterm grade in the mid-60’s
end with a 4.0 in the course

Histogram

90s 10 Median 74

80s 24

70s 23 Average 67.71

60s 13

50s 10 Standard Deviation 20.32
40s 11



Given: a polytope

Find: the lowest point in the polytope




Given: a polytope

Find: the lowest point in the polytope

Maximize z; + 2z;
We have fast

subject to:
algorithms for this!

2Z1—Z2+3Z3S1
—Z1+2y— 23 <5




Linear Algebra primer

For a, x € R™ we think of a and x as column vectors
a'x =ayx;+ -+ a,x,

The set of x satisfying a' x = 0 is hyperplane
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Given: a polytope

Find: the lowest point in the polytope
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Linear Algebra primer

For a, x € R™ we think of a and x as column vectors
To —

_Alx_
Azx
Write m X n matrix 4, for Ax = | A3X [where A4, ..., A,, are rows of A.
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Given: a polytope \ ’ 0V
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Find: the lowest point in the polytope > w’ﬁ‘
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Maximize c' x
subject to
Ax<b./
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Ax < b means
(Ax); < b;

forall i
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Given: a polytope \ y? VY

Find: the lowest point in the polytope
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Maximize ¢ x
subject to
Ax < b.

2 b
As At maximum x \ Typically # constraints m > n
AZ] X = b2] Lowest point is a vertex defined
A3 b3 by some n rows, A'x = b’
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Standard Form

Maximize c" x

subject to
Ax < b
5 x=0

~ |\
o€ @j
Maximize z; + 225 ,
subject to %/XZ B &
2z1 —z;+3z3 <1 \, \\ N
—Z1+2Z;— Z3 <5 “iﬂ

replace each z; by
Xia ~ Xib

for XigwXip =0

Maximize (xm — x1,b) + 2(X34 — X3p)
subject to
2 (xl,a — x1,b) — (xZ,a - xZ,b) + 3 (x3,a o x3,b) <1

—(xl,a - xl,b) + (xZ,a — xz,b) — (X30—x3p) =5
x=0
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Max Flow

Given: A Flow Network G = (V, E)
with source s, sink t, and ¢: E —» R’

Maximize flow out of s

-~

subject to
* respecting capacities

* flow conservation at internal
nodes

LP Variables:

X, for each e € E representing
flow on edge e

Maximize 2 Xe
eoutofs
subject to

0<x,<c(e)foreverye € E

Y x- Y

e outof v eintov

for every nodev € V — {s, t}



Max Flow . LT

Maximize 2 Xe Maximiz
e out of — subject to
subject to —— Ax < b

x>0 This is for the ¢ above.
Nothing to do with

- / capacities!

0<x,<c(e)foreverye € E

Z X, = Z Xe 1. ¢, = {(1) lf(lelout of s
eoutofv. ~ eintov otherwise
for every node v € V — {s, t} 2. x, < c(e)

Replace equality constraints by a 3. Ze out of v Xe — Ze into v Xe <0

pair of inequalities
4. Zeintovxe _ Zeoutofvxe <0

5. x=0
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Minimization or Maximization

Minimize c"x Maximize (—¢)"x
subject to > subject to
Ax% b (—A4)x < (—b)
x=>0 x=>0
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Shortest Paths

Given: Directed graph ¢ = (V,E)
vertices s, tinV

Find: (length of) shortest path from s to £

Claim: Length ¥ of the shortest path is
the solution to this program.

Proof sketch: A sl'y{est path yields a
solution of cost Y. Optimal solution
must be a combination of flows on
shortest paths also cost #; otherwise
there is a part of the 1 unit of flow that
gets counted on more than ¢ edges.

Minimize er Sum offlowon/
all edges
e
subject to
x=>0
Z Xe — 1 Flow outof sis 1
eoutofs
2 X, =1 Flow into tis 1
. e
eintot

[
=
|

3 .

eintov

for every nodev € V — {s, t}

Flow conservation
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Shortest Paths

Given: Directed graph ¢ = (V,E)
vertices s, tinV

Find: shortest path from sto ¢

Claim: Length ¥ of the shortest path is
the solution to this program.

Proof sketch: A shortest path yields a
solution of cost Y. Optimal solution
must be a combination of flows on
shortest paths, also cost ¥; otherwise
parts of the 1 unit of flow that gets
counted on more than ¢ edges.

N =

N =

Not optimal

1/6 routed
through 3 edges
instead of 2.
Value = 2.166666
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Vertex Cover

Given: Undirected graph G = (V,E)

Find: smallest set of vertices touching all
edges of (.

Doesn’t work: To define a set we need
X, =0o0orx, =1

1/2

LP minimum = 3/2

Vertex Cover minimum = 2
1/2 1/2

Natural Variables for LP:

x, foreachv eV

Minimize Z Xv
v

subject to

0<x,<1foreachnodev eV
C—/ﬂ

X, +x, = 1foreachedge {u, v} €E
C/’?

This LP optimizes for a different problem:
“fractional vertex cover”.

X, indicates the fraction of vertex v that
is chosen in the cover.
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What makes Max Flow different?

For Vertex Cover we only got a fractional optimum but for Max Flow can get integers.
 Why?
* Ford-Fulkerson analysis tells us this for Max Flow.
* Is there a reason we can tell just from the LP view?

Recall: Optimum is at some vertex x satisfying A'x = b’ for some subset of exactly
n constraints.

This means that x = (A")~1b’.
Entries of the matrix inverse are quotients of determinants of sub-matrices of
A’ so, for integer inputs, optimum is always rational.

Fact: Every full rank submatrix of MaxFlow matrix A has determinant +1

)

= all denominators are +1 = integers. A is “totally unimodular’

Next: How MaxFlow=MinCut is an example of a general “duality” property of LPs



