
CSE 421

Introduction to Algorithms

Lecture 20:  Linear Programming:

A really very extremely big hammer
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Midterm

Median    74

Average    67.71

Standard Deviation 20.32

Histogram

90s    10

80s 24

70s 23

60s 13

50s 10

40s 11

<40 10 

Midterm grades will be released at the end of this class.

• Breathe! 

• These grades don’t count for that much.

• In past 421 I’ve had a student with a midterm grade in the mid-60’s 

end with a 4.0 in the course  



Given: a polytope

Find: the lowest point in the polytope

polytope
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Maximize �� +  ���
subject to:��� − �� + ��� ≤ �−�� + �� −   �� ≤ 	 

polytope

We have fast

algorithms for this!

Given: a polytope

Find: the lowest point in the polytope
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Linear Algebra primer

For 
, � ∈ ℝ� we think of 
 and � as column vectors


�� = 
��� + ⋯ + 
���
The set of � satisfying 
�� = � is hyperplane
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�� = �
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�� ≤ �
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�� ≤ �
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Given: a polytope

Find: the lowest point in the polytope
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Given: a polytope

Find: the lowest point in the polytope
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Linear Algebra primer

For 
, � ∈ ℝ� we think of 
 and � as column vectors


�� = 
��� + ⋯ + 
���

Write � × � matrix �, for �� =
���������… ���

where ��, … , �� are rows of �.
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Given: a polytope

Find: the lowest point in the polytope

Maximize ���
subject to�� ≤ �.
�� ≤ � means

�� � ≤ �� 
for all �

�
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Given: a polytope

Find: the lowest point in the polytope

Maximize ���
subject to�� ≤ �.

Typically # constraints � ≥ � 
Lowest point is a vertex defined 

by some � rows, ��� = �′

�
At maximum ����� � = ����

13



Standard Form

Maximize ���
subject to�� ≤ �� ≥ �

Maximize �� +  ���
subject to��� − �� + ��� ≤ �−�� + �� −   �� ≤ 	

Maximize ��,
 − ��,� +  �(��,
 − ��,�)
subject to

� ��,
 − ��,� − ��,
 − ��,� + �(��,
 − ��,�) ≤ �
− ��,
 − ��,� + ��,
 − ��,� −    (��,
 − ��,�) ≤ 	� ≥ �

replace each �� by��,
 − ��,�
for ��,
,��,� ≥ �
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Max Flow

Maximize

subject to

� ≤ �! ≤ � ! for every ! ∈ "
# �!

$

! %&' %( )
= # �!                               

$

! *+'% )
for every node ) ∈ , − {., /}

Given: A Flow Network 1 = (,, ")
with source ., sink /, and �: " → ℝ4�

Maximize flow out of .
subject to

• respecting capacities

• flow conservation at internal 

nodes

# �!
$

! %&' %( .

LP Variables: 

�! for each ! ∈ " representing   

flow on edge !
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Maximize

subject to

� ≤ �! ≤ � ! for every ! ∈ "
# �!

$

! %&' %( )
= # �!                               

$

! *+'% )
for every node ) ∈ , − {., /}

# �!
$

! %&' %( .
Maximize ���
subject to�� ≤ �� ≥ �

1. �! = 5� if ! out of .� otherwise
2. �! ≤ �(!)
3. ∑ �!$! %&' %( ) − ∑ �! ≤ � $! *+'% )
4. ∑ �!$! *+'% ) − ∑ �! ≤ � $! %&' %( )
5. � ≥ �

Replace equality constraints by a 

pair of inequalities

This is for the � above. 

Nothing to do with 

capacities!

Max Flow
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Minimization or Maximization

Minimize ���
subject to�� ≥ �� ≥ �

Maximize (−�)��
subject to(−�)� ≤ (−�)� ≥ �
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Shortest Paths

Given: Directed graph 1 = (,, ")
vertices ., / in ,

Find: (length of) shortest path from . to /
Claim: Length ℓ of the shortest path is 

the solution to this program.

Proof sketch: A shortest path yields a  

solution of cost ℓ.  Optimal solution 

must be a combination of flows on 

shortest paths also cost ℓ; otherwise 

there is a part of the � unit of flow that 

gets counted on more than ℓ edges.

Minimize

subject to

� ≥ �
# �!

$

! %&' %( .
= �              

# �!
$

! *+'% /
= �           

# �!
$

! %&' %( )
= # �!

$

! *+'% )
for every node ) ∈ , − {., /}

# �!
$

! 

Flow out of . is �

Flow into / is �

Flow conservation

Sum of flow on

all edges
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Shortest Paths

Given: Directed graph 1 = (,, ")
vertices ., / in ,

Find: shortest path from . to /
Claim: Length ℓ of the shortest path is 

the solution to this program.

Proof sketch: A shortest path yields a  

solution of cost ℓ.  Optimal solution 

must be a combination of flows on 

shortest paths, also cost ℓ; otherwise 

parts of the � unit of flow that gets 

counted on more than ℓ edges.
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Not optimal

1/6 routed 

through 3 edges 

instead of 2.

Value = 2.166666

Optimal

Value = 2



Vertex Cover

Given: Undirected graph 1 = (,, ")
Find: smallest set of vertices touching all 

edges of 1.

Doesn’t work: To define a set we need�) = � or �) = �

Minimize

subject to                           
    � ≤ �) ≤ � for each node ) ∈ ,
�C + �) ≥ � for each edge C, ) ∈ "

# �)
$

) 

Natural Variables for LP: 

�) for each ) ∈ ,

�/�

�/��/�

LP minimum =  �/�
Vertex Cover minimum =  �

This LP optimizes for a different problem: 

“fractional vertex cover”.�) indicates the fraction of vertex ) that 

is chosen in the cover.

20



What makes Max Flow different?
For Vertex Cover we only got a fractional optimum but for Max Flow can get integers.

• Why?

• Ford-Fulkerson analysis tells us this for Max Flow.

• Is there a reason we can tell just from the LP view?

Recall: Optimum is at some vertex � satisfying ��� = �′ for some subset of exactly

� constraints.

This means that � = �′ E��′.

Entries of the matrix inverse are quotients of determinants of sub-matrices of 

�′ so, for integer inputs, optimum is always rational.

Fact:  Every full rank submatrix of MaxFlow matrix � has determinant ±�

⇒ all denominators are ±� ⇒ integers. � is “totally unimodular”

Next:  How MaxFlow=MinCut is an example of a general “duality” property of LPs
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