
CSE 421

Introduction to Algorithms

Lecture 18: Applications/Extensions of

Network Flow

1

Announcements

This week:

Tomorrow 4:30 pm: Zoom review session for Q&A. Bring your questions.

• Zoom link TBA.

Wednesday: No lecture. Midterm 6:00 – 7:30 pm

• HW6 out

Thursday: Section Network Flow

Friday: Holiday

2

3

Recall: Bipartite Matching using Network Flow

Add new source s pointing to left set, new sink t pointed to by right set.

Direct all edges from left to right with capacity 1. Compute MaxFlow.

C

1

5

2

A

E

3

B

D 4

1

1

1
1

1
1

1
1

1

s t

1

1

1

1

1

1

1

1

1

1

4

More Bipartite Matching using Network Flow

It also works if we have no capacity limit on the edges of the input graph � since we

can never get more than 1 unit of flow to these edges and flows are integral w.l.o.g.

C

1

5

2

A

E

3

B

D 4

∞

∞

∞ ∞

∞
∞

∞
∞

∞

s t

1

1

1

1

1

1

1

1

1

1

5

Bipartite Matching using Network Flow

Add new source s pointing to left set, new sink t pointed to by right set.

Direct edges left to right; new edges have capacity 1. Compute MaxFlow.

C

1

5

2

A

E

3

B

D 4

s

1

t

1/1

1/1

1

1

1/1

1 1/1

1/1

1/1

1/1

1/1

1

1

Time �(��)
Correctness:

Integer flow just

gives a subset of

edges.

Source and sink

edges imply it is

a matching
Optimality

6

Defn: A matching � ⊆
 is perfect iff every vertex is in some edge.

Q: When does a bipartite graph have a perfect matching?

• Clearly we must have |�| = |�|.

• What other conditions are necessary?

• What conditions are sufficient?

Perfect Matching

6

7

Notation: For � be a set of vertices let �(�) be the set of vertices

adjacent to nodes in � (the “neighborhood of �”).

Observation: If a bipartite graph � = (� ∪ �,
) has a perfect

matching, then � � ≥ |�| for all subsets � ⊆ �.

Proof: Each node in � has to be matched to a different node in �(�).

Hall’s Theorem say this is the only condition we need: If there is no

perfect matching then there is some subset � ⊆ � with � � < |�|.

Perfect Matching

7

Hall’s Theorem Proof

8

�

C

1

5

2

A

E

3

B

D 4

s

1

t

1/1

1/1

1

1

1/1

1 1/1

1/1

1/1

1/1

1/1

1

1

�
No perfect matching

⇒ MaxFlow value < |�|

⇒ MinCut value < |�|.

Let (�, �) be cut with � �, � < �

Let � = � ∩ � and � = � ∩ �.

Must have � � ⊆ �

since �(�, �) is finite.

(no edges of � can cross cut)

Then |�| > �(�, �) = |�| − |�| + |�|

so � � ≤ |�| < |�|.

Matching in General Graphs?

9

10

Bipartite matching running times?

• Generic augmenting path: �(��).

• Shortest augmenting path: �(�� /").

• Until very recently these were the best...

• Recent algorithms for maxflow give �(� #$) time with high probability.

General matching?

• Augmenting paths don’t work

• [Edmonds 1965] Added notion of “blossoms” for first polytime algorithm �(�%)

• One of the most famous/important papers in the field: “Paths, Trees, and Flowers”

• [Micali-Vazirani 1980, 2020] Tricky data structures and analysis. �(�� /")

Matching: Best Running Times

10

Disjoint Paths

11

12

Defn: Two paths in a graph are edge-disjoint iff they have no edge in common.

Disjoint path problem: Given: a directed graph � = (&,
) and two vertices ' and (.

Find: the maximum # of edge-disjoint '-(simple paths in �.

Application: Routing in communication networks.

Edge-Disjoint Paths

s

a

b

c

d

e

f

t

12

13

Defn: Two paths in a graph are edge-disjoint iff they have no edge in common.

Disjoint path problem: Given: a directed graph � = (&,
) and two vertices ' and (.

Find: the maximum # of edge-disjoint simple '-(paths in �.

Application: Routing in communication networks.

Edge-Disjoint Paths

s

a

b

c

d

e

f

t

13

Edge-Disjoint Paths

MaxFlow for edge-disjoint paths

• Delete edges into ' or out of (

• Assign capacity to every edge

• Compute MaxFlow

Theorem: MaxFlow = # edge-disjoint paths

14

s

a

b

c

d

e

f

t

1

1

1

1

1

1

1

1

1 1

1
1

1

1

MaxFlow for edge-disjoint paths

• Delete edges into ' or out of (

• Assign capacity to every edge

• Compute MaxFlow

Edge-Disjoint Paths

15

s

a

b

c

d

e

f

t

1/1

1/1

1

1

1

1/1

1/1

1/1

1/1 1/1

1
1

1/1

1/1

Theorem: MaxFlow = # edge-disjoint paths

Proof: ≥: Assign flow 1 to each edge in

the set of paths

MaxFlow for edge-disjoint paths

• Delete edges into ' or out of (

• Assign capacity to every edge

• Compute MaxFlow

Edge-Disjoint Paths

16

s

a

b

c

d

e

f

t

1/1

1/1

1

1

1

1/1

1/1

1/1

1/1 1/1

1
1

1/1

1/1

Theorem: MaxFlow = # edge-disjoint paths

Proof: ≥: Assign flow 1 to each edge in

the set of paths

≤: Consider any integral maximum

flow) on �

By integrality, each edge with flow

has flow 1.

Remove any directed cycles in)

with flow; still have a maxflow.

Greedily choose '-(paths, one by one,

removing candidate flow edge after using it.

Paths are simple since no directed cycles.

Network Connectivity

Defn: A set of edges * ⊆
 in � = (&,
) disconnects (from ' iff every '-(path uses at

least one edge in *. (Equivalently, removing all edges in * makes (unreachable.)

Network Connectivity: Given: a directed graph � = (&,
) and two nodes ' and (,

Find: minimum # of edges whose removal disconnects (from '.

17

s

a

b

c

d

e

f

t

Min # of disconnecting edges: 2

No '-(path remains.

Edge-Disjoint Paths and Network Connectivity

Menger’s Theorem: Maximum # of edge-disjoint '-(paths

= Minimum # of edges whose removal disconnects (from '.

Proof: Choose maximum set of MaxFlow edge-disjoint '-(paths.

18

s

a

b

c

d

e

f

t

1/1

1/1

1

1

1

1/1

1/1

1/1

1/1 1/1

1
1

1/1

1/1

Disconnecting set needs

≥ edge from each path

= MaxFlow = MinCut edges.

Edges out of minimum cut is a

disconnecting set of size MinCut

Both # of edge-disjoint paths and disconnecting sets make sense for an undirected graph

� = &,
 , too. Same ideas work:

• Replace each undirected edge {,, -} with directed edges (,, -) and -, , to get

directed graph �’ = (&,
’) and run directed graph algorithm on �’.

• After removing directed cycles, flow can use only one of (,, -) or (-, ,).

• Include edge {,, -} on a path if either one is used in directed version.

The same idea works in general for Network Flow on undirected graphs:

• Remove flow cycles:

Edge-Disjoint Paths in Undirected Graphs

19

u v

u v
7/9

3/9
u v9 u v

4/9

9

u v
9

9

u v

Circulation with Demands

20

Circulation with Demands

• Single commodity, directed graph � = (&,
)

• Each node - has an associated demand 0(-)

• Needs to receive an amount of the commodity: demand 0 - > 1

• Supplies some amount of the commodity: “demand” 0 - < 1 (amount = |0(-)|)

• Each edge 2 has a capacity � 2 ≥ 1.

• Nothing lost: ∑ 0 - = 14
- .

Defn: A circulation for (�, �, 0) is a flow function):
 → ℝ meeting all the

capacities, 1 ≤) 2 ≤ �(2), and demands:

∑) 2 − ∑) 24
2 89: 8; - = 0(-)4

2 <=:8 - .

Circulation with Demands: Given (�, �, 0), does it have a circulation? If so, find it.

21

Circulation with Demands

Defn: Total supply > = ∑ 0 -4
-: 0 - ?1 = − ∑ 0(-)4

-: 0 - ?1 .

Necessary condition: ∑ 0 - = >4
-: 0 - @1 (no supply is lost)

22

3

10 6

-7

-8

11

-6

9

10 0

7

4

7

4

demand

supply

Circulation with Demands using Network Flow

• Add new source ' and sink (.

• Add edge (', -) for all supply nodes - with capacity |0(-)|.

• Add edge (-, () for all demand nodes - with capacity 0(-).

• Compute MaxFlow.

23

3

10 6

-7

-8

11

-6

9

10 0

7

4

7

4

s t11

10

6

8

7

Circulation with Demands using Network Flow

• MaxFlow ≤ > based on cuts out of ' or into (.

• If MaxFlow = > then all supply/demands satisfied.

• If.

• Compute MaxFlow. Circulation iff value = >

24

3/3

4/10 6/6
-7

-8

11

-6

7/9

10 0

6/7

4/4

1/7

2/4

s t11/11

10/10

6/6

8/8

7/7

Circulation with Demands using Network Flow

Circulation = flow on original edges

Circulations only need integer flows

25

3/3

4/10 6/6
-7

-8

11

-6

7/9

10 0

6/7

4/4

1/7

2/4

Circulation with Demands using Network Flow

When does a circulation not exist? MaxFlow < > iff MinCut < >.

• If.

26

4/4

3/10 6/7
-7

-8

11

-6

6/9

10 0

4/4

4

4/4

7

4

s t11/11

10/10

6/6

7/8

7/7

Circulation with Demands using Network Flow

When does a circulation not exist? MaxFlow < > iff MinCut < >.

Equivalent to excess supply on “source” side of cut smaller than cut capacity.

• If.

27

4

10 7

-7

-8

11

-6

9

10 0

4

4

7

4

Excess supply

15 – 10 = 5

Cut capacity = 4 < 5 = Excess supply

Some general ideas for using MaxFlow/MinCut

• If no source/sink, add them with appropriate capacity depending on application

• Sometimes can have edges with no capacity limits

• Infinite capacity (or, equivalently, very large integer capacity)

• Convert undirected graphs to directed ones

• Can remove unnecessary flow cycles in answers

• Another idea:

• To use them for vertex capacities �-

• Make two copies of each vertex - named -A�, -$,(

28

v vin vout

�-

