
CSE 421

Introduction to Algorithms

Lecture 18:  Applications/Extensions of 

Network Flow
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Announcements

This week:

Tomorrow 4:30 pm:  Zoom review session for Q&A. Bring your questions. 

• Zoom link TBA.

Wednesday: No lecture. Midterm 6:00 – 7:30 pm

• HW6 out 

Thursday:  Section Network Flow

Friday:  Holiday

2



3

Recall: Bipartite Matching using Network Flow

Add new source s pointing to left set, new sink t pointed to by right set. 

Direct all edges from left to right with capacity 1.  Compute MaxFlow.
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More Bipartite Matching using Network Flow

It also works if we have no capacity limit on the edges of the input graph � since we 

can never get more than 1 unit of flow to these edges and flows are integral w.l.o.g.  
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Bipartite Matching using Network Flow

Add new source s pointing to left set, new sink t pointed to by right set. 

Direct edges left to right; new edges have capacity 1.  Compute MaxFlow.
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Defn: A matching � ⊆ 
 is perfect iff every vertex is in some edge.

Q: When does a bipartite graph have a perfect matching?

• Clearly we must have |�| = |�|.

• What other conditions are necessary?

• What conditions are sufficient?

Perfect Matching
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Notation: For � be a set of vertices let �(�) be the set of vertices 

adjacent to nodes in � (the “neighborhood of �”).

Observation: If a bipartite graph � = (� ∪ �, 
) has a perfect 

matching, then � � ≥ |�| for all subsets � ⊆ �.

Proof: Each node in � has to be matched to a different node in �(�).

Hall’s Theorem say this is the only condition we need:  If there is no 

perfect matching then there is some subset � ⊆ � with � � < |�|.

Perfect Matching
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Hall’s Theorem Proof
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No perfect matching 

⇒ MaxFlow value < |�|

⇒ MinCut value <  |�|.

Let (�, �) be cut with � �, � < �

Let � = � ∩ � and � = � ∩ �.

Must have � � ⊆ �

since �(�, �) is finite.

(no edges of � can cross cut)

Then |�| >  �(�, �)  =  |�| − |�| + |�|

so � � ≤ |�| < |�|.



Matching in General Graphs?
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Bipartite matching running times?

• Generic augmenting path:  �(��).

• Shortest augmenting path:  �(�� /").

• Until very recently these were the best...

• Recent algorithms for maxflow give �(� #$  ) time with high probability.

General matching?

• Augmenting paths don’t work

• [Edmonds 1965] Added notion of  “blossoms” for first polytime algorithm  �(�%)

• One of the most famous/important papers in the field: “Paths, Trees, and Flowers”

• [Micali-Vazirani 1980, 2020] Tricky data structures and analysis.  �(�� /")

Matching:  Best Running Times
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Disjoint Paths
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Defn: Two paths in a graph are edge-disjoint iff they have no edge in common.

Disjoint path problem: Given: a directed graph � = (&, 
) and two vertices ' and (. 

Find: the maximum # of edge-disjoint '-( simple paths in �.

Application: Routing in communication networks.

Edge-Disjoint Paths
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Defn: Two paths in a graph are edge-disjoint iff they have no edge in common.

Disjoint path problem: Given: a directed graph � = (&, 
) and two vertices ' and (. 

Find: the maximum # of edge-disjoint simple '-( paths in �.

Application: Routing in communication networks.

Edge-Disjoint Paths
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Edge-Disjoint Paths

MaxFlow for edge-disjoint paths

• Delete edges into ' or out of (

• Assign capacity  to every edge

• Compute MaxFlow

Theorem: MaxFlow = # edge-disjoint paths
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MaxFlow for edge-disjoint paths

• Delete edges into ' or out of (

• Assign capacity  to every edge

• Compute MaxFlow

Edge-Disjoint Paths
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Proof:  ≥: Assign flow 1 to each edge in 

the set of paths



MaxFlow for edge-disjoint paths

• Delete edges into ' or out of (

• Assign capacity  to every edge

• Compute MaxFlow

Edge-Disjoint Paths
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Theorem: MaxFlow = # edge-disjoint paths

Proof:  ≥: Assign flow 1 to each edge in 

the set of paths

≤:  Consider any integral maximum 

flow ) on �

By integrality, each edge with flow 

has flow 1.

Remove any directed cycles in )

with flow; still have a maxflow.

Greedily choose '-( paths, one by one,     

removing candidate flow edge after using it.

Paths are simple since no directed cycles.



Network Connectivity

Defn: A set of edges * ⊆ 
 in � = (&, 
) disconnects ( from ' iff every '-( path uses at 

least one edge in *.  (Equivalently, removing all edges in * makes ( unreachable.)

Network Connectivity: Given: a directed graph � = (&, 
) and two nodes ' and (,  

Find: minimum # of edges whose removal disconnects ( from '.
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Edge-Disjoint Paths and Network Connectivity

Menger’s Theorem: Maximum # of edge-disjoint '-( paths 

= Minimum # of edges whose removal disconnects ( from '.

Proof:  Choose maximum set of MaxFlow edge-disjoint '-( paths.
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Both # of edge-disjoint paths and disconnecting sets make sense for an undirected graph 

� = &, 
 , too.   Same ideas work:

• Replace each undirected edge {,, -} with directed edges (,, -) and -, , to get 

directed graph �’ = (&, 
’) and run directed graph algorithm on �’.

• After removing directed cycles, flow can use only one of (,, -) or (-, ,).

• Include edge {,, -} on a path if either one is used in directed version.

The same idea works in general for Network Flow on undirected graphs:

• Remove flow cycles:  

Edge-Disjoint Paths in Undirected Graphs
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Circulation with Demands
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Circulation with Demands

• Single commodity, directed graph � = (&, 
)

• Each node - has an associated demand 0(-)

• Needs to receive an amount of the commodity: demand 0 - >  1

• Supplies some amount of the commodity: “demand” 0 - < 1 (amount = |0(-)|)

• Each edge 2 has a capacity � 2 ≥  1.

• Nothing lost:  ∑ 0 - = 14
- .

Defn: A circulation for (�, �, 0) is a flow function ): 
 → ℝ meeting all the 

capacities, 1 ≤ ) 2 ≤ �(2), and demands: 

∑ ) 2 − ∑ ) 24
2 89: 8; - = 0(-)4

2 <=:8 - .

Circulation with Demands: Given (�, �, 0), does it have a circulation? If so, find it.
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Circulation with Demands

Defn: Total supply > = ∑ 0 -4
-: 0 - ?1 = − ∑ 0(-)4

-: 0 - ?1 .

Necessary condition: ∑ 0 - = >4
-: 0 - @1 (no supply is lost)
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Circulation with Demands using Network Flow

• Add new source ' and sink (.

• Add edge (', -) for all supply nodes - with capacity |0(-)|.

• Add edge (-, () for all demand nodes - with capacity 0(-). 

• Compute MaxFlow.
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Circulation with Demands using Network Flow

• MaxFlow ≤ > based on cuts out of ' or into (.

• If MaxFlow = > then all supply/demands satisfied.

• If.

• Compute MaxFlow. Circulation iff value = >
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Circulation with Demands using Network Flow

Circulation = flow on original edges

Circulations only need integer flows
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Circulation with Demands using Network Flow

When does a circulation not exist?   MaxFlow < > iff MinCut < >.

• If.
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Circulation with Demands using Network Flow

When does a circulation not exist?   MaxFlow < > iff MinCut < >.

Equivalent to excess supply on “source” side of cut smaller than cut capacity. 

• If.
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Some general ideas for using MaxFlow/MinCut

• If no source/sink, add them with appropriate capacity depending on application

• Sometimes can have edges with no capacity limits

• Infinite capacity (or, equivalently, very large integer capacity)

• Convert undirected graphs to directed ones

• Can remove unnecessary flow cycles in answers

• Another idea: 

• To use them for vertex capacities �-

• Make two copies of each vertex - named -A�, -$,(
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