## CSE 421 Introduction to Algorithms

## Lecture 18: Applications/Extensions of Network Flow

**W** PAUL G. ALLEN SCHOOL of computer science & engineering

### Announcements

This week:

Tomorrow 4:30 pm: Zoom review session for Q&A. Bring your questions.

• Zoom link TBA.

Wednesday: No lecture. Midterm 6:00 – 7:30 pm

• HW6 out

Thursday: Section Network Flow

Friday: Holiday



### **Recall: Bipartite Matching using Network Flow**

Add new source **s** pointing to left set, new sink **t** pointed to by right set. Direct all edges from left to right with capacity 1. Compute MaxFlow.



### **More Bipartite Matching using Network Flow**

It also works if we have no capacity limit on the edges of the input graph G since we can never get more than 1 unit of flow to these edges and flows are integral w.l.o.g.



### **Bipartite Matching using Network Flow**

Add new source **s** pointing to left set, new sink **t** pointed to by right set. Direct edges left to right; new edges have capacity 1. Compute MaxFlow.



### **Perfect Matching**

**Defn:** A matching  $M \subseteq E$  is perfect iff every vertex is in some edge.

**Q:** When does a bipartite graph have a perfect matching?

- Clearly we must have |L| = |R|.
- What other conditions are necessary?
- What conditions are sufficient?



### **Perfect Matching**

Notation: For S be a set of vertices let N(S) be the set of vertices adjacent to nodes in S (the "neighborhood of S").

**Observation:** If a bipartite graph  $G = (L \cup R, E)$  has a perfect matching, then  $|N(S)| \ge |S|$  for all subsets  $S \subseteq L$ .

**Proof:** Each node in **S** has to be matched to a different node in N(S).

**Hall's Theorem** say this is the only condition we need: If there is no perfect matching then there is some subset  $S \subseteq L$  with |N(S)| < |S|.

### Hall's Theorem Proof



### Matching in General Graphs?



**W** PAUL G. ALLEN SCHOOL of computer science & engineering

### **Matching: Best Running Times**

Bipartite matching running times?

- Generic augmenting path: O(mn).
- Shortest augmenting path:  $O(mn^{1/2})$ .
- Until very recently these were the best...
- Recent algorithms for maxflow give  $O(m^{1+o(1)})$  time with high probability.

General matching?

- Augmenting paths don't work
- [Edmonds 1965] Added notion of "blossoms" for first polytime algorithm  $O(n^4)$ 
  - One of the most famous/important papers in the field: "Paths, Trees, and Flowers"
- [Micali-Vazirani 1980, 2020] Tricky data structures and analysis.  $O(mn^{1/2})$

# **Disjoint Paths**

**W** PAUL G. ALLEN SCHOOL of computer science & engineering

**Defn:** Two paths in a graph are edge-disjoint iff they have no edge in common.

**Disjoint path problem:** Given: a directed graph G = (V, E) and two vertices s and t. Find: the maximum # of edge-disjoint s-t simple paths in G.

**Application:** Routing in communication networks.



**Defn:** Two paths in a graph are edge-disjoint iff they have no edge in common.

**Disjoint path problem:** Given: a directed graph G = (V, E) and two vertices s and t. Find: the maximum # of edge-disjoint simple s-t paths in G.

**Application:** Routing in communication networks.



MaxFlow for edge-disjoint paths

- Delete edges into s or out of t
- Assign capacity **1** to every edge
- Compute MaxFlow

**Theorem:** MaxFlow = # edge-disjoint paths



MaxFlow for edge-disjoint paths

- Delete edges into s or out of t
- Assign capacity **1** to every edge
- Compute MaxFlow

**Theorem:** MaxFlow = # edge-disjoint paths

**Proof:** ≥: Assign flow 1 to each edge in the set of paths



MaxFlow for edge-disjoint paths

- Delete edges into s or out of t
- Assign capacity **1** to every edge
- Compute MaxFlow



#### **Theorem:** MaxFlow = # edge-disjoint paths

- **Proof:** ≥: Assign flow 1 to each edge in the set of paths
  - Consider any integral maximum
    flow *f* on *G*

By integrality, each edge with flow has flow 1.

Remove any directed cycles in *f* with flow; still have a maxflow.

Greedily choose *s*-*t* paths, one by one, removing candidate flow edge after using it.

Paths are simple since no directed cycles.

### **Network Connectivity**

**Defn:** A set of edges  $F \subseteq E$  in G = (V, E) disconnects t from s iff every s-t path uses at least one edge in F. (Equivalently, removing all edges in F makes t unreachable.)

Network Connectivity: Given: a directed graph G = (V, E) and two nodes s and t, Find: minimum # of edges whose removal disconnects t from s.



Min # of disconnecting edges: 2 No *s*-*t* path remains.



### **Edge-Disjoint Paths and Network Connectivity**

#### Menger's Theorem: Maximum # of edge-disjoint s-t paths = Minimum # of edges whose removal disconnects t from s.

**Proof:** Choose maximum set of MaxFlow edge-disjoint *s*-*t* paths.



Disconnecting set needs

- $\geq$  **1** edge from each path
- = MaxFlow = MinCut edges.

Edges out of minimum cut is a disconnecting set of size MinCut

### **Edge-Disjoint Paths in Undirected Graphs**

Both # of edge-disjoint paths and disconnecting sets make sense for an undirected graph G = (V, E), too. Same ideas work:

• Replace each undirected edge  $\{u, v\}$  with directed edges (u, v) and (v, u) to get directed graph G' = (V, E') and run directed graph algorithm on G'.



- After removing directed cycles, flow can use only one of (u, v) or (v, u).
- Include edge  $\{u, v\}$  on a path if either one is used in directed version.

The same idea works in general for Network Flow on undirected graphs:

• Remove flow cycles: u = 9 - v u = 9 - v u = 9 - v u = 7/9 - v u = 4/9 - v

## **Circulation with Demands**



### **Circulation with Demands**

- Single commodity, directed graph G = (V, E)
- Each node v has an associated demand d(v)
  - Needs to receive an amount of the commodity: demand d(v) > 0
  - Supplies some amount of the commodity: "demand" d(v) < 0 (amount = |d(v)|)
- Each edge e has a capacity  $c(e) \ge 0$ .
- Nothing lost:  $\sum_{\nu} d(\nu) = 0$ .

**Defn:** A circulation for (G, c, d) is a flow function  $f: E \to \mathbb{R}$  meeting all the capacities,  $0 \le f(e) \le c(e)$ , and demands:  $\sum_{e \text{ into } v} f(e) - \sum_{e \text{ out of } v} f(e) = d(v).$ 

**Circulation with Demands:** Given (*G*, *c*, *d*), does it have a circulation? If so, find it.

### **Circulation with Demands**

**Defn:** Total supply  $D = \sum_{v: d(v) < 0} |d(v)| = -\sum_{v: d(v) < 0} d(v)$ . Necessary condition:  $\sum_{v: d(v) > 0} d(v) = D$  (no supply is lost)





- Add new source s and sink t.
- Add edge (s, v) for all supply nodes v with capacity |d(v)|.
- Add edge (v, t) for all demand nodes v with capacity d(v).



• Compute MaxFlow.

- MaxFlow  $\leq D$  based on cuts out of s or into t.
- If MaxFlow = **D** then all supply/demands satisfied.



Circulation = flow on original edges

Circulations only need integer flows



When does a circulation not exist? MaxFlow < D iff MinCut < D.



When does a circulation not exist? MaxFlow < **D** iff MinCut < **D**.

Equivalent to excess supply on "source" side of cut smaller than cut capacity.





### Some general ideas for using MaxFlow/MinCut

- If no source/sink, add them with appropriate capacity depending on application
- Sometimes can have edges with no capacity limits
  - Infinite capacity (or, equivalently, very large integer capacity)
- Convert undirected graphs to directed ones
- Can remove unnecessary flow cycles in answers
- Another idea:
  - To use them for vertex capacities  $c_{\nu}$ 
    - Make two copies of each vertex v named  $v_{in}$ ,  $v_{out}$



