CSE 421
Introduction to Algorithms

Lecture 18: Applications/Extensions of
Network Flow

Announcements

This week:

Tomorrow 4:30 pm: Zoom review session for Q&A, Bring your questions.
: —

e Zoom link TBA.

Wednesday: No lecture.

 HW6 out
N+ g

Thursday: Section Network Flow

Friday: Holiday d‘“’“ % CQ,} W@WQ . 0l X

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Recall: Bipartite Matching using Network Flow

Add new source S pointing to left set, new sink t pointed to by right set.

Direct all edges from left to right with capacity 1. Compute MaxFlow.

e
1 1 O

1 1

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

More Bipartite Matching using Network Flow

It also works if we have no capacity limit on the edges of the input graph G since we
can never get more than 1 unit of flow to these edges and flows are integral w.l.o.g.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Bipartite Matching using Network Flow

Add new source s pointing to left set, new sink t pointed to by right set.

Direct edges left to right; new edges have capacity 1. Compute MaxFlow.

Correctness:
Integer flow just
gives a subset of
edges.

Time O(mn)

Source and sink
edges imply it is
a matching

Perfect Matching

Defn: A matching M € E is perfect iff every vertex is in some edge.

C—

Q: When does a bipartite graph have a perfect matching?

* Clearly we must have |L| = |R|.
* What other conditions are necessary?
* What conditions are sufficient?

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Perfect Matching

Notation: For S be a set of vertices let N(S§) be the set of vertices
adjacent to nodes in S (the “neighborhood of §”). @‘a
iy

Observation: If a bipartite graph G = (£, U R, E) has a perfect
matching, then |[N(S)| = |S| for all subsets § € L. W=E

Proof: Each node in § has to be matched to a different node in N(S). = N\

Hall’s Theorem say this is the only condition we need: If thereis n
perfect matching then there is some subset S € L with [N(S)| < |

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Hall’s Theorem Proof

No perfect matching
= MaxFlow value < |L|
= MinCut value < |L|.
-ut valus
Let (4, B) be cut with c(4,B) < L
letS =ANLandT =ANR.

Musthave N(S) S T

since c(4, B) is finite. e

(no edges of G can crossct
Thefr LS (A, B) = L~ ISl + [T

o [N LT[< |S|. ~ m \

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Matching in General Graphs?

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Matching: Best Running Times

Bipartite matching running times?
* Generic augmenting path: 0(mn).
« Shortest augmenting path: 0(mn'/?).
* Until very recently these were the best...

« Recent algorithms for maxflow give O (m**°() time with high probability.

General matching?
* Augmenting paths don’t work

* [Edmonds 1965] Added notion of “blossoms” for first polytime algorithm 0 (n*)
* One of the most famous/important papers in the field: “Paths, Trees, and Flowers”

e [Micali-Vazirani 1980, 2020] Tricky data structures and analysis. 0(mn'/?)

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Disjoint Paths

PAUL G. ALLEN SCHOOL

Edge-Disjoint Paths

Defn: Two paths in a graph are edge-disjoint iff they have nin common.

Disjoint path problem: Given: a @gcted graph G = (V,E) and two vertices,s and .
Find: the maximum # of edge-disjoint s-t simple paths in G.

Application: Routing in communication networks.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Edge-Disjoint Paths
Defn: Two paths in a graph are edge-disjoint iff they have no edge in common.

Disjoint path problem: Given: a directed graph G = (V, E) and two vertices s and t.
Find: the maximum # of edge-disjoint simple s-t paths in G.

Application: Routing in communication networks.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Edge-Disjoint Paths

MaxFlow for edge-disjoint paths Theorem: MaxFlow = # edge-disjoint paths
* Delete edges into s or out of £
* Assign capacity 1 to every edge
e Compute MaxFlow

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Edge-Disjoint Paths

MaxFlow for edge-disjoint paths Theorem: MaxFlow = # edge-disjoint paths
* Delete edges into s or out of ¢ Proof: >: Assign flow 1 to each edge in
* Assign capacity 1 to every edge the set of paths

e Compute MaxFlow

1/@\
11 1 1
1
%1/1 \é—ﬂ‘l
T S T PR U
\‘é71/1

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Edge-Disjoint Paths ‘">~
Ay\(L

MaxFlow for edge-disjoint paths - ZTheorem: MaxFlow = # edge-disjoint paths

* Delete edges into s or out of ¢ Proof: >: Assign flow 1 to each edge in
* Assign capacity 1 to every edge the set of paths
* Compute MaxFlow <: Consider any integral maximum
flow fon G
By integrality, each edge with row/
has flow 1.
\
~ Remove any directed cycles in f
~ with flow; still have a maxflow.

Greedily choose s-t paths, one by one,
removing candidate flow edge after using it.

Paths are simple since no directed cycles. ®

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Network Connectivity

Defn: Asetofedges F C E in G = (V, E) disconnects t from s iff every s-t path uses at
least one edge in F. (Equivalently, removing all edges in F makes £ unreachable.)

Network Connectivity: Given: a directed graph ¢ = (V, E) and two nodes s and ¢,
Find: minim(m&jﬁf edges whose removal disconnects t from s.
/€

d

Min # of disconnecting edges: 2
No s-t path remains.

.
S
L2
L 2
IS
.
.
.
L2
.
IS
.
.
L
L
.
.
S
L2
‘e
.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Edge-Disjoint Paths and Network Connectivity

Menger’s Theorem: Maximum # of edge-disjoint s-t paths
= Minimum # of edges whose removal disconnects t from s.

Proof: Choose maximum set of MaxFIow edge-disjoint s-t paths.

Disconnecting set needs
> 1 edge from each path
é = MaxFlow = MinCut edges.
\(i)— 1/1 —— _—
11 1/1 Edges out of minimum cut is a

—_—

disconnecting set of size MinCut
[

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Edge-Disjoint Paths in Undirected Graphs

Both # of edge-disjoint paths and disconnecting sets make sense for an undirected graph
G = (V,E), too. Same ideas work:

* Replace each undirected edge {u, v} with directed edges (u, v) and (v, u) to get
directed graph ¢’ = (V, E’) and run directed graph algorithm on G".

0 = W

<
 After removing directed cycles, flow can use only one of (u, v) or (v, u).

* Include edge {u, v} on a path if either one is used in directed version.

The same idea works in general for Network Flow on undirected graphs:

* Remove flow cycles: @/ 9 j@ 7/9 :@ 4/9;‘@
u 9 v
w v 9 *~3/9

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Circulation with Demands

PAUL G. ALLEN SCHOOL

Circulation with Demands

* Single commodity, directed graph G = (V, E)
* Each node v has an associated demand d(%

* Needs to receive an amount of the commodity: demand d(v) > 0

* Supplies some amount of the commodity: “demand” d(v) < 0 (amount = |d(v)|)
* Each edge e has a capacity c(e) = 0. -

* Nothinglost:)., d(v) = 0.

Defn: A circulation for (G, ¢, d) is a flow function f: E — R meeting all the
capacities, 0 < f(e) < c(e), and demands:

Zeintovf(e) - Ze out ofvf(e) = d(v)

Circulation with Demands: Given (G, ¢, d), does it have a circulation? If so, find it.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Circulation with Demands

Defn: Total supply D =)., gim)<old(W)] = — 2. ay<0 d().

e —

Necessary condition:), . s,0=0 (V) = D (no supply is lost)
% (v)>/

-8 -6 [~—supply
/'?\ 7 7/?\
10 6 4 9
-7
O/ ; m N
10 0 11
T

demand

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Circulation with Demands using Network Flow

* Add new source s and sink t.
* Add edge (s, v) for all supply nodes v with capacity |d(v)|.
* Add edge (v, t) for all demand nodes v with capacity d(v).

* Compute MaxFlow. 10

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Circulation with Demands using Network Flow

* MaxFlow < D based on cuts out of s or into t.

* If MaxFlow = D then all supply/demands satisfied.

T G 5
8/5%6/7 1/7
4/10 6/6 o/ 7/9
/—@/ 3/3 4/4 \fO 11/11
V= dfe) gty oy ngo,t 0 11 —

« Compute MaxFlow. Circulation iff value = D 10/107__

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Circulation with Demands using Network Flow
Circulation = flow on original edges

Circulations only need integer flows

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Circulation with Demands using Network Flow

When does a circulation not exist? MaxFlow < D iff MinCut < D.

6/6

-8 -6

7/8 7'?\
a4 7

310 677 4 4 6/9
-7 \/\
7/740/4/4 > a/4a——O—11/11
10 0 11
10/10 .
[G —=

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Circulation with Demands using Network Flow

When does a circulation not exist? MaxFlow < D iff MinCut < D.

Equivalent to excess supply on “source” side of cut smaller than cut capacity.

-8 -6
Excess supply
15-10=5
/'?\ 4 7 /?\
10 7/ 4 9

10 "y 0 11

Cut capacity =4 < 5 = Excess supply

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Some general ideas for using MaxFlow/MinCut

If no source/sink, add them with appropriate capacity depending on application

Sometimes can have edges with no capacity limits
* Infinite capacity (or, equivalently, very large integer capacity)

Convert undirected graphs to directed ones
Can remove unnecessary flow cycles in answers

Another idea:
* To use them for vertex capacities c,,
* Make two copies of each vertex v named v;,,, v

S e

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

