CSE 421 Introduction to Algorithms

Lecture 17: Polynomial-Time MaxFlow/MinCut Algorithms

Announcements

Midterm next Wednesday, November 8, 6:00-7:30 pm in this room

- See post on Important Midterm Information
- Links to sample midterm, practice problems, and reference sheet posted yesterday
- Zoom review session for Q\&A on Tuesday Nov 7 at 4:30 pm.

Minimum Cut Problem

Minimum s-t cut problem:

Given: a flow network
Find: an s - t cut (A, B) of minimum capacity $c(A, B)=\sum_{e \text { out of } A} c(e)$

Maximum Flow Problem

Given: a flow network
Find: an \boldsymbol{s} - t flow of maximum value

Ford-Fulkerson Augmenting Path Algorithm

```
Ford-Fulkerson(G, s, t, c) {
    foreach e G E f(e) \leftarrow 0
    Gf}\leftarrow\leftarrow residual graph
    while (Gf has an s-t path P) {
        f}\leftarrow\mathrm{ Augment(f, C, P)
        update G}\mp@subsup{G}{f}{
    }
    return f
}
```

```
Augment (f, C, P) {
    b}\leftarrow\mp@code{bottleneck(P)
    foreach e f P {
        if (e\inE) f(e) \leftarrowf(e) + b
        else f(e ( R ) \leftarrowf(e (e) - b
    }
    return f
}
```


MaxFlow/MinCut \& Ford-Fulkerson Algorithm

Augmenting Path Theorem: Flow f is a max flow \Leftrightarrow there are no augmenting paths wrt f

Max-Flow Min-Cut Theorem: The value of the max flow equals the value of the min cut.
[Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] "MaxFlow = MinCut"

Flow Integrality Theorem: If all capacities are integers then there is a maximum flow with all-integer flow values.

Ford-Fulkerson Algorithm: $O(\boldsymbol{m})$ per iteration. With integer capacities each at most C need at most MaxFlow $<\mathbf{n C}$ iterations for a total of $O(\mathbf{m n C})$ time.

Ford-Fulkerson Efficiency

Worst case runtime $O(m n C)$ with integer capacities $\leq C$.

- $O(\mathbf{m})$ time per iteration.
- At most $n C$ iterations.
- This is "pseudo-polynomial" running time.
- May take exponential time, even with integer capacities:

Choosing Good Augmenting Paths

Polynomial-Time Variants of Ford-Fulkerson

Use care when selecting augmenting paths.

- Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.
- If capacities are irrational, algorithm not guaranteed to terminate!

Goal: Choose augmenting paths so that:

- Can find augmenting paths efficiently.
- Few iterations.
- Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
- Max bottleneck capacity.
- Sufficiently large bottleneck capacity.
- Fewest number of edges.

Polynomial-Time MaxFlow: Capacity Scaling

General idea:

- Choose augmenting paths P with 'large' capacity.
- Can augment flows along a path \mathbf{P} by any amount $\leq \operatorname{bottleneck}(\boldsymbol{P})$
- Ford-Fulkerson still works
- Choose that amount to be "nice round number" (i.e. a big power of 2.)
- Get a flow that is maximum for the high-order bits first and then add more bits later

Capacity Scaling

Write Capacities in Binary

Capacity Scaling Bit 1

Solve flow problem with capacities with just the high-order bit:

Capacity Scaling Bit 1

Solve flow problem with capacities with just the high-order bit:

- Each edge has "capacity" ≤ 1 (equivalent to 4 here)
- Time O(mn)

Capacity Scaling Bit 1

Capacity Scaling Bit 2

Add 0 bit to the end of the flows
Add bit 2 to capacities (all viewed as multiples of 2)
Old Min cut

Solve flow problem with capacities with the $\mathbf{2}$ high-order bits:

- Capacity of old min cut goes up by ≤ 1 per edge (equivalent to 2 here) for a total residual capacity $\leq m$.

Capacity Scaling Bit 2

Solve flow problem with capacities with the $\mathbf{2}$ high-order bits:

- Capacity of old min cut goes up by ≤ 1 per edge (equivalent to 2 here) for a total residual capacity $\leq m$.
- Time $O\left(m^{2}\right)$ for $\leq m$ iterations.

Capacity Scaling Bits 1 and 2

Capacity Scaling Bit 3

Add 0 bit to the end of the flows
Add bit 3 to capacities (all now multiples of 1)

Solve flow problem with capacities with all 3 bits:

- Capacity of old min cut goes up by $\leq \mathbb{1}$ per edge for a total residual capacity $\leq m$.

Capacity Scaling Bit 3

Solve flow problem with capacities with all 3 bits:

- Capacity of old min cut goes up by $\leq \mathbb{1}$ per edge for a total residual capacity $\leq m$.
- Time $O\left(m^{2}\right)$ for $\leq m$ iterations.

Capacity Scaling All Bits

Flow $=15$

Capacity Scaling All Bits

$$
\text { Flow }=15
$$

$$
\text { Cut Value = } 15
$$

Flow is a MaxFlow

Total time for capacity scaling

- Number of rounds $=\left\lceil\log _{2} C\right\rceil$ where C is the largest capacity
- Time per round $O\left(m^{2}\right)$
- At most m augmentations per round
- $O(\boldsymbol{m})$ time per augmentation

Total time $O\left(\boldsymbol{m}^{2} \log \boldsymbol{C}\right)$
Great! This is now polynomial time in the input size.
Can we get more?

- What about an algorithm with a number of arithmetic operations that doesn't depend on the size of the numbers?

Polynomial-Time Variants of Ford-Fulkerson

Use care when selecting augmenting paths.

- Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.
- If capacities are irrational, algorithm not guaranteed to terminate!

Goal: Choose augmenting paths so that:

- Can find augmenting paths efficiently.
- Few iterations.
- Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
- Max bottleneck capacity.
- Sufficiently large bottleneck capacity.
- Fewest number of edges. (i.e. just run BFS to find an augmenting path.)

Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)

Use Breadth First Search as the search algorithm to find an s - t path in G_{f}.

- Using any shortest augmenting path

Theorem: Ford-Fulkerson using BFS terminates in $\boldsymbol{O}\left(\boldsymbol{m}^{2} \boldsymbol{n}\right)$ time. [Edmonds-Karp, Dinitz]
"One of the most obvious ways to implement Ford-Fulkerson is always polynomial time"

Why might this be good intuitively?

- Longer augmenting paths involve more edges so may be more likely to hit a low residual capacity one which would limit the amount of flow improvement.

The proof uses a completely different idea...

Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)

Analysis Focus:

For any edge e that could be in the residual graph G_{f}, (either an edge in G or its reverse) count \# of iterations that e is the first bottleneck edge on the augmenting path chosen by the algorithm.

Claim: This can't happen in more than $n / 2$ iterations.
Proof: Write $e=(u, v)$.
Show that each time it happens, the distance from s to u in the residual graph G_{f} is at least 2 more than it was the last time.

This would be enough since the distance is either $<\boldsymbol{n}$ (or infinite and hence u isn't reachable) so this can happen at most $n / 2$ times.

Distances in the Residual Graph

Key Lemma: Let f be a flow, G_{f} the residual graph, and P be a shortest augmenting path. No vertex is closer to s in the residual graph after augmenting along P.

Proof: Augmenting along P can only change the edges in G_{f} by either:

1. Deleting a forward edge

- Deleting any edge can never reduce distances

2. Add a backward edge (v, u) that is the reverse of an edge (u, v) of P

- Since P was a shortest path in G_{f}, the distance from s to v in G_{f} is already more than the distance from s to u. Using the new backward edge (v, u) to get to u would be an even longer path to u so it is never on a shortest path to any node in the new residual graph.

Augmentation vs BFS

First Bottleneck Edges in G_{f}

After augmenting along P, edge (u, v) disappears; but will have edge (v, u)

For $(\boldsymbol{u}, \boldsymbol{v})$ to be a first bottleneck edge later, it must get added back to the residual graph by augmenting along a shortest path P^{\prime} containing (v, u) in G_{f}, for some flow f^{\prime}

$$
\text { Since } P^{\prime} \text { is shortest } d_{f^{\prime}}(s, u)=d_{f^{\prime}}(s, v)+1 \geq d_{f}(s, v)+1=d_{f}(s, u)+2
$$

The next time that $(\boldsymbol{u}, \boldsymbol{v})$ is first bottleneck edge is even later so distance is at least as large!

Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)

Analysis Focus:

For any edge e that could be in the residual graph G_{f}, (either an edge in G or its reverse) count \# of iterations that e is the first bottleneck edge on the augmenting path chosen by the algorithm.

Claim: This can't happen in more than $n / 2$ iterations

Claim \Rightarrow Theorem:
Only $2 \boldsymbol{m}$ edges and $O(\boldsymbol{m})$ time per iteration so $O\left(m^{2} n\right)$ time overall.

Which is better in practice $O\left(\boldsymbol{m}^{2} \boldsymbol{n}\right)$ vs. $O\left(\boldsymbol{m}^{2} \log \boldsymbol{C}\right)$?

History \& State of the Art for MaxFlow Algorithms

\#	year	discoverer(s)	bound
1	1951	Dantzig	$O\left(n^{2} m U\right)$
2	1955	Ford \& Fulkerson	$O(n m U)$
3	1970	Dinitz Edmonds \& Karp	$O\left(n m^{2}\right)$
4	1970	Dinitz	$O\left(n^{2} m\right)$
5	1972	Edmonds \& Karp Dinitz	$O\left(m^{2} \log U\right)$
6	1973	Dinitz Gabow	$O(n m \log U)$
7	1974	Karzanov	$O\left(n^{3}\right)$
8	1977	Cherkassky	$O\left(n^{2} \sqrt{m}\right)$
9	1980	Galil \& Naamad	$O\left(n m \log ^{2} n\right)$
10	1983	Sleator \& Tarjan	$O(n m \log n)$
11	1986	Goldberg \& Tarjan	$O\left(n m \log \left(n^{2} / m\right)\right)$
12	1987	Ahuja \& Orlin	$O\left(n m+n^{2} \log U\right)$
13	1987	Ahuja et al.	$O(n m \log (n \sqrt{\log U} /(m+2))$
14	1989	Cheriyan \& Hagerup	$E\left(n m+n^{2} \log ^{2} n\right)$
15	1990	Cheriyan et al.	$O\left(n^{3} / \log n\right)$
16	1990	Alon	$O\left(n m+n^{8 / 3} \log n\right)$
17	1992	King et al.	$O\left(n m+n^{2+\epsilon}\right)$
18	1993	Phillips \& Westbrook	$O\left(n m\left(\log _{m / n} n+\log ^{2+\epsilon} n\right)\right)$
19	1994	King et al.	$O\left(n m \log _{m /(n \log n)} n\right)$
20	1997	Goldberg \& Rao	$\begin{aligned} & O\left(m^{3 / 2} \log \left(n^{2} / m\right) \log U\right) \\ & O\left(n^{2 / 3} m \log \left(n^{2} / m\right) \log U\right) \end{aligned}$

21	2013	Orlin	$O(m n)$
22	2014	Lee \& Sidford	$m \sqrt{n} \log ^{O(1)} n \log \boldsymbol{U}$
23	2016	Madry	$\boldsymbol{m}^{10 / 7} \boldsymbol{U}^{1 / 7} \log ^{O(1)} \boldsymbol{n}$
24	2021	Gao, Liu, \& Peng	$\boldsymbol{m}^{3 / 2-1 / 328} \log ^{O(1)} n \log \boldsymbol{U}$
25	2022	van den Brand et al.	$\boldsymbol{m}^{3 / 2-1 / 58} \log ^{O(1)} \boldsymbol{n} \log \boldsymbol{U}$
26	2022	Chen et al.	$\boldsymbol{m}^{1+o(1)} \log \boldsymbol{U}$

Tables use \boldsymbol{U} instead of C for the upper bound on capacities
Methods: Augmenting Paths - increase flow to capacity
Preflow-Push - decrease flow to get flow conservation
Linear Programming - randomized high probability

Source: Goldberg \& Rao, FOCS ‘ 97

