CSE 421 Introduction to Algorithms

Lecture 17: Polynomial-Time MaxFlow/MinCut Algorithms

Announcements

Midterm next Wednesday, November 8, 6:00 – 7:30 pm in this room

- See post on Important Midterm Information
- Links to sample midterm, practice problems, and reference sheet posted yesterday
- Zoom review session for Q&A on Tuesday Nov 7 at 4:30 pm.

Minimum Cut Problem

Minimum s-t cut problem:

Find: an *s*-*t* cut (*A*, *B*) of minimum capacity $c(A, B) = \sum_{i=1}^{n} c(e)$

e out of A

Maximum Flow Problem

Given: a flow network **Find:** an *s*-*t* flow of maximum value

Ford-Fulkerson Augmenting Path Algorithm

```
Ford-Fulkerson(G, s, t, c) {
   foreach e \in E f(e) \leftarrow 0
   G<sub>f</sub> \leftarrow residual graph
   while (G<sub>f</sub> has an s-t path P) {
      f \leftarrow Augment(f, c, P)
      update G<sub>f</sub>
   }
   return f
}
```

```
Augment(f, c, P) {

    b \leftarrow bottleneck(P)

    foreach e \in P {

        if (e \in E) f(e) \leftarrow f(e) + b

        else f(e<sup>R</sup>) \leftarrow f(e<sup>R</sup>) - b

    }

    return f

}
```

MaxFlow/MinCut & Ford-Fulkerson Algorithm

Augmenting Path Theorem: Flow f is a max flow \Leftrightarrow there are no augmenting paths wrt f

Max-Flow Min-Cut Theorem: The value of the max flow equals the value of the min cut. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] "MaxFlow = MinCut"

Flow Integrality Theorem: If all capacities are integers then there is a maximum flow with all-integer flow values.

Ford-Fulkerson Algorithm: O(m) per iteration. With integer capacities each at most *C* need at most MaxFlow < nC iterations for a total of O(mnC) time.

Ford-Fulkerson Efficiency

Worst case runtime O(mnC) with integer capacities $\leq C$.

- O(m) time per iteration.
- At most *nC* iterations.
- This is "pseudo-polynomial" running time.
- May take exponential time, even with integer capacities:

Choosing Good Augmenting Paths

Polynomial-Time Variants of Ford-Fulkerson

Use care when selecting augmenting paths.

- Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.
- If capacities are irrational, algorithm not guaranteed to terminate!

Goal: Choose augmenting paths so that:

- Can find augmenting paths efficiently.
- Few iterations.
- Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
 - Max bottleneck capacity.
 - Sufficiently large bottleneck capacity.
 - Fewest number of edges.

Polynomial-Time MaxFlow: Capacity Scaling

General idea:

- Choose augmenting paths **P** with 'large' capacity.
- Can augment flows along a path P by any amount < bottleneck(P)
 - Ford-Fulkerson still works
- Choose that amount to be "nice round number" (i.e. a big power of 2.)
- Get a flow that is maximum for the high-order bits first and then add more bits later

Capacity Scaling

Write Capacities in Binary

Solve flow problem with capacities with just the high-order bit:

Solve flow problem with capacities with just the high-order bit:

- Each edge has "capacity" ≤ 1 (equivalent to 4 here)
- Time *0*(*mn*)

Add 0 bit to the end of the flows Add bit 2 to capacities (all viewed as multiples of 2) Old Min cut **10**0 а 10 011 011 10/11 10/100 10/111 b S **10**0 001 **10/11**0 **10/11**0

Solve flow problem with capacities with the **2** high-order bits:

10/101

 Capacity of old min cut goes up by < 1 per edge (equivalent to 2 here) for a total residual capacity < m.

Ζ

Solve flow problem with capacities with the **2** high-order bits:

- Capacity of old min cut goes up by < 1 per edge (equivalent to 2 here) for a total residual capacity < m.
- Time $O(m^2)$ for $\leq m$ iterations.

Capacity Scaling Bits 1 and 2

Add 0 bit to the end of the flows Add bit 3 to capacities (all now multiples of 1)

Solve flow problem with capacities with all 3 bits:

Capacity of old min cut goes up by ≤ 1 per edge for a total residual capacity ≤ m.

Solve flow problem with capacities with all 3 bits:

- Capacity of old min cut goes up by ≤ 1 per edge for a total residual capacity ≤ m.
- Time $O(m^2)$ for $\leq m$ iterations.

Capacity Scaling All Bits

Capacity Scaling All Bits

Flow is a MaxFlow

Total time for capacity scaling

- Number of rounds = $[log_2 C]$ where C is the largest capacity
- Time per round $O(m^2)$
 - At most *m* augmentations per round
 - *O*(*m*) time per augmentation

Total time $O(m^2 \log C)$

Great! This is now polynomial time in the input size.

Can we get more?

• What about an algorithm with a number of arithmetic operations that doesn't depend on the size of the numbers?

Polynomial-Time Variants of Ford-Fulkerson

Use care when selecting augmenting paths.

- Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.
- If capacities are irrational, algorithm not guaranteed to terminate!

Goal: Choose augmenting paths so that:

- Can find augmenting paths efficiently.
- Few iterations.
- Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
 - Max bottleneck capacity.
 - Sufficiently large bottleneck capacity.
 - Fewest number of edges. (i.e. just run BFS to find an augmenting path.)

Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)

Use Breadth First Search as the search algorithm to find an s-t path in G_f .

• Using any shortest augmenting path

Theorem: Ford-Fulkerson using BFS terminates in $O(m^2n)$ time. [Edmonds-Karp, Dinitz]

"One of the most obvious ways to implement Ford-Fulkerson is always polynomial time"

Why might this be good intuitively?

• Longer augmenting paths involve more edges so may be more likely to hit a low residual capacity one which would limit the amount of flow improvement.

The proof uses a completely different idea...

Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)

Analysis Focus:

For any edge e that could be in the residual graph G_f , (either an edge in G or its reverse) count # of iterations that e is the first bottleneck edge on the augmenting path chosen by the algorithm.

Claim: This can't happen in more than n/2 iterations.

Proof: Write e = (u, v).

Show that each time it happens, the distance from s to u in the residual graph G_f is at least 2 more than it was the last time.

This would be enough since the distance is either < n

(or infinite and hence u isn't reachable) so this can happen at most n/2 times.

Distances in the Residual Graph

Key Lemma: Let f be a flow, G_f the residual graph, and P be a shortest augmenting path. No vertex is closer to s in the residual graph after augmenting along P.

Proof: Augmenting along *P* can only change the edges in G_f by either:

- 1. Deleting a forward edge
 - Deleting any edge can never reduce distances
- 2. Add a backward edge (v, u) that is the reverse of an edge (u, v) of **P**
 - Since *P* was a shortest path in *G_f*, the distance from *s* to *v* in *G_f* is already more than the distance from *s* to *u*. Using the new backward edge (*v*, *u*) to get to *u* would be an even longer path to *u* so it is never on a shortest path to any node in the new residual graph.

Augmentation vs BFS

First Bottleneck Edges in G_f

Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)

Analysis Focus:

For any edge e that could be in the residual graph G_f , (either an edge in G or its reverse) count # of iterations that e is the first bottleneck edge on the augmenting path chosen by the algorithm.

Claim: This can't happen in more than n/2 iterations

Claim \Rightarrow Theorem:

Only 2m edges and O(m) time per iteration so $O(m^2n)$ time overall.

Which is better in practice $O(m^2 n)$ vs. $O(m^2 \log C)$?

History & State of the Art for MaxFlow Algorithms

	#	year	discoverer(s)	bound
	1	1951	Dantzig	$O(n^2mU)$
	2	1955	Ford & Fulkerson	O(nmU)
	3	1970	Dinitz	$O(nm^2)$
			Edmonds & Karp	
	4	1970	Dinitz	$O(n^2m)$
	5	1972	Edmonds & Karp	$O(m^2 \log U)$
			Dinitz	
4	6	1973	Dinitz	$O(nm\log U)$
			Gabow	
	7	1974	Karzanov	$O(n^3)$
	8	1977	Cherkassky	$O(n^2\sqrt{m})$
	9	1980	Galil & Naamad	$O(nm\log^2 n)$
	10	1983	Sleator & Tarjan	$O(nm\log n)$
	11	1986	Goldberg & Tarjan	$O(nm\log(n^2/m))$
	12	1987	Ahuja & Orlin	$O(nm + n^2 \log U)$
	13	1987	Ahuja et al.	$O(nm\log(n\sqrt{\log U}/(m+2)))$
	14	1989	Cheriyan & Hagerup	$E(nm + n^2 \log^2 n)$
-	15	1990	Cheriyan et al.	$O(n^3/\log n)$
	16	1990	Alon	$O(nm + n^{8/3}\log n)$
	17	1992	King et al.	$O(nm + n^{2+\epsilon})$
	18	1993	Phillips & Westbrook	$O(nm(\log_{m/n}n + \log^{2+\epsilon}n))$
	19	1994	King et al.	$O(nm \log_{m/(n \log n)} n)$
	20	1997	Goldberg & Rao	$\frac{O(nm\log_{m/(n\log n)} n)}{O(m^{3/2}\log(n^2/m)\log U)}$
				$O(n^{2/3}m\log(n^2/m)\log U)$

21	2013	Orlin	0(mn)
22	2014	Lee & Sidford	$m\sqrt{n}\log^{O(1)}n\log U$
23	2016	Madry	$m^{10/7} U^{1/7} \log^{O(1)} n$
24	2021	Gao, Liu, & Peng	$m^{3/2-1/328}\log^{O(1)}n\log U$
25	2022	van den Brand et al.	$m^{3/2-1/58}\log^{O(1)}n\log U$
26	2022	Chen et al.	$m^{1+o(1)}\log U$

Tables use **U** instead of **C** for the upper bound on capacities

Methods: Augmenting Paths – increase flow to capacity Preflow-Push – decrease flow to get flow conservation Linear Programming – randomized high probability

Source: Goldberg & Rao, FOCS '97

PAUL G. ALLEN SCHOOL of computer science & engineering

012 Orlin + King et al. O(n)