CSE 421 Introduction to Algorithms

Lecture 16: Ford-Fulkerson

Announcements

See EdStem Announcement/Email posted/sent yesterday.
Midterm next Wednesday, November 8, 6:00-7:30 pm in this room

- Exam designed for a regular class time-slot but this includes extra time to finish.
- Coverage:
- Up to the end of last Thursday's section on Dynamic Programming
- Sample midterm for practice problems and length coming later today.
- Will include "reference sheet" available to you on the midterm.
- Tomorrow's section will focus on review problems.
- Zoom review session for Q\&A on Tuesday Nov 7 at 4:30 pm.

Last time: Flow Network

Flow network:

- Abstraction for material flowing through the edges.
- $G=(V, E)$ directed graph, no parallel edges.
- Two distinguished nodes: $\boldsymbol{s}=$ source, $\boldsymbol{t}=$ sink.
- $c(e)=$ capacity of edge $e \geq 0$.

Last time: Minimum Cut Problem

Minimum s-t cut problem:

Given: a flow network
Find: an s - t cut (A, B) of minimum capacity $c(A, B)=\sum_{e \text { out of } A} c(e)$

Last time: Flows

Defn: An \boldsymbol{s} - \boldsymbol{t} flow in a flow network is a function $\boldsymbol{f}: \boldsymbol{E} \rightarrow \mathbb{R}$ that satisfies:

- For each $e \in E: 0 \leq f(e) \leq c(e)$
[capacity constraints]
- For each $v \in V-\{s, t\}: \sum_{e \text { into } v} f(e)=\sum_{e \text { out of } v} f(e) \quad$ [flow conservation]

Defn: The value of flow \boldsymbol{f},

$$
v(f)=\sum_{e \text { out of } s} f(e)
$$

Only show non-zero values of \boldsymbol{f}

$$
\text { value = } 24
$$

Last time: Maximum Flow Problem

Given: a flow network
Find: an \boldsymbol{s} - t flow of maximum value

Last time: Certificate of Optimality

Corollary: Let f be any s - \boldsymbol{t} flow and (A, B) be any s - t cut.
If $\boldsymbol{v}(\boldsymbol{f})=\boldsymbol{c}(\boldsymbol{A}, \boldsymbol{B})$ then \boldsymbol{f} is a max flow and $(\boldsymbol{A}, \boldsymbol{B})$ is a min cut.

Value of flow $=28$

Capacity of cut $=28$

Both are optimal!

Last time: Towards a Max Flow Algorithm

What about the following greedy algorithm?

- Start with $f(e)=0$ for all edges $e \in E$.
- While there is an s - t path P where each edge has $f(e)<c(e)$.
- "Augment" flow along P; that is:
- Let $\alpha=\min _{e \in P}(c(e)-f(e))$
- Add α to flow on every edge e along path P. (Adds α to $v(f)$.)

But this can get stuck...

Flows and cuts so far

Let f be any s - t flow and $(\boldsymbol{A}, \boldsymbol{B})$ be any \boldsymbol{s} - \boldsymbol{t} cut:
Flow Value Lemma: The net value of the flow sent across (A, B) equals $v(f)$.

$$
v(f)=\sum_{e \text { out of } A} f(e)-\sum_{e \text { into } A} f(e)
$$

Weak Duality: The value of the flow is at most the capacity of the cut;

$$
\text { i.e., } v(f) \leq c(A, B) \text {. "Maxflow } \leq \text { Mincut" }
$$

Corollary: If $v(f)=c(A, B)$ then f is a maximum flow and (A, B) is a minimum cut.
Augmenting along paths using a greedy algorithm can get stuck.
Today: Ford-Fulkerson Algorithm, which applies greedy ideas to a "residual graph" that lets us reverse prior flow decisions from the basic greedy approach.

Greed Revisited: Residual Graph \& Augmenting Paths

The only way we could route more flow from \mathbf{s} to \mathbf{t} would be to reduce the flow from \mathbf{u} to \mathbf{v} to make room for that amount of extra flow from \mathbf{s} to \mathbf{v}.
But to conserve flow we also would need to increase the flow from \mathbf{u} to \mathbf{t} by that same amount.

Suppose that we took this flow \boldsymbol{f} as a baseline, what changes could each edge handle?

- We could add up to 10 units along sv or ut or uv
- We could reduce by up to 20 units from su or uv or vt This gives us a residual graph \boldsymbol{G}_{f} of possible changes
 where we draw reducing as "sending back".

Greed Revisited: Residual Graph \& Augmenting Paths

Greed Revisited: Residual Graph \& Augmenting Paths

No s - t path
BTW: Flow is optimal

Residual Graphs

Original edge: $e=(u, v) \in E$.

- Flow $f(\boldsymbol{e})$, capacity $c(e)$.

Residual edges of two kinds:

- Forward: $e=(u, v)$ with capacity $c_{f}(\boldsymbol{e})=c(e)-f(e)$
- Amount of extra flow we can add along e
- Backward: $\boldsymbol{e}^{\mathrm{R}}=(\boldsymbol{v}, \boldsymbol{u})$ with capacity $\boldsymbol{c}_{\boldsymbol{f}}(\boldsymbol{e})=\boldsymbol{f}(\boldsymbol{e})$
- Amount we can reduce/undo flow along e

Residual graph: $\boldsymbol{G}_{\boldsymbol{f}}=\left(\boldsymbol{V}, \boldsymbol{E}_{\boldsymbol{f}}\right)$.

- Residual edges with residual capacity $\boldsymbol{c}_{\boldsymbol{f}}(\boldsymbol{e})>\mathbf{0}$.
- $\boldsymbol{E}_{f}=\{\boldsymbol{e}: \boldsymbol{f}(\boldsymbol{e})<\boldsymbol{c}(\boldsymbol{e})\} \cup\left\{\boldsymbol{e}^{\mathrm{R}}: \boldsymbol{f}(\boldsymbol{e})>\mathbf{0}\right\}$.

Residual Graphs and Augmenting Paths

Residual edges of two kinds:

- Forward: $e=(u, v)$ with capacity $c_{f}(\boldsymbol{e})=c(e)-f(e)$
- Amount of extra flow we can add along e
- Backward: $\boldsymbol{e}^{\mathrm{R}}=(\boldsymbol{v}, \boldsymbol{u})$ with capacity $\boldsymbol{c}_{\boldsymbol{f}}(\boldsymbol{e})=\boldsymbol{f}(\boldsymbol{e})$
- Amount we can reduce/undo flow along e

Residual graph: $\boldsymbol{G}_{\boldsymbol{f}}=\left(\boldsymbol{V}, \boldsymbol{E}_{\boldsymbol{f}}\right)$.

- Residual edges with residual capacity $\boldsymbol{c}_{\boldsymbol{f}}(\boldsymbol{e})>\mathbf{0}$.
- $\boldsymbol{E}_{\boldsymbol{f}}=\{\boldsymbol{e}: \boldsymbol{f}(\boldsymbol{e})<\boldsymbol{c}(\boldsymbol{e})\} \cup\left\{\boldsymbol{e}^{\mathrm{R}}: \boldsymbol{f}(\boldsymbol{e})>\mathbf{0}\right\}$.

Augmenting Path: Any $\boldsymbol{s}-\boldsymbol{t}$ path \boldsymbol{P} in $\boldsymbol{G}_{\boldsymbol{f}} . \quad$ Let bottleneck $(\boldsymbol{P})=\min _{\boldsymbol{e} \in \boldsymbol{P}} \boldsymbol{c}_{\boldsymbol{f}}(\boldsymbol{e})$.
Ford-Fulkerson idea: Repeat "find an augmenting path P and increase flow by bottleneck (\boldsymbol{P}) " until none left.

Ford-Fulkerson Algorithm

Cut capacity $=19$

Augmenting Path Algorithm

```
Ford-Fulkerson(G, s, t, c) {
    foreach e GE f f(e) \leftarrow0
    Gf}\leftarrow\leftarrow residual graph
    while (Gf has an s-t path P) {
        f}\leftarrow\mathrm{ Augment(f, C, P)
        update G}\mp@subsup{G}{f}{
    }
    return f
}
```

```
Augment (f, C, P) {
    b}\leftarrow\mathrm{ bottleneck(P)
    foreach e \in P {
        if (e\inE) f(e) \leftarrow f(e) + b
        else f(e R)\leftarrowf(er) - b
    }
    return f
}
```


Max-Flow Min-Cut Theorem

Augmenting Path Theorem: Flow f is a max flow \Leftrightarrow there are no augmenting paths wrt f
Max-Flow Min-Cut Theorem: The value of the max flow equals the value of the min cut.
[Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] "Maxflow = Mincut"

Proof: We prove both together by showing that all of these are equivalent:
(i) There is a cut (A, B) such that $v(f)=c(A, B)$.
(ii) Flow f is a max flow.
(iii) There is no augmenting path w.r.t. f.
(i) \Rightarrow (ii): We already know this by the corollary to weak duality lemma.

Only (iii) \Rightarrow (i) remaining
(ii) \Rightarrow (iii): (by contradiction)

If there is an augmenting path w.r.t. flow f then we can improve f. Therefore f is not a max flow.

Proof of Max-Flow Min-Cut Theorem

$$
(\text { (iii) } \Rightarrow(\mathrm{i}):
$$

Claim: If there is no augmenting path w.r.t. f, there is a cut (A, B) s.t. $v(f)=c(A, B)$.
Proof of Claim: Let f be a flow with no augmenting paths.
Let A be the set of vertices reachable from s in residual graph G_{f}.

- By definition of $A, s \in A$.
- Since no augmenting path ($s-t$ path in G_{f}), $t \notin A$.

Then $v(f)=\sum_{e \text { out of } A} f(e)-\sum_{e \text { into } A} f(e)$

original network

Proof of Max-Flow Min-Cut Theorem

$$
(\text { (iii) } \Rightarrow(\mathrm{i}):
$$

Claim: If there is no augmenting path w.r.t. f, there is a cut (A, B) s.t. $v(f)=c(A, B)$.
Proof of Claim: Let f be a flow with no augmenting paths.
Let A be the set of vertices reachable from s in residual graph G_{f}.

- By definition of $A, s \in A$.
$\mathbf{0}=\boldsymbol{c}_{\boldsymbol{f}}\left(\boldsymbol{e}^{\mathrm{R}}\right)=\boldsymbol{f}(\boldsymbol{e})$
- Since no augmenting path ($s-t$ path in G_{f}), $t \notin A$.

Then $v(f)=\sum_{e \text { out of } A} f(e)-\sum_{e \text { into } A} f(e)$

$$
=\sum_{e \text { out of } A} f(e)
$$

original network

Proof of Max-Flow Min-Cut Theorem

$$
(\text { (iii) } \Rightarrow(\mathrm{i}):
$$

Claim: If there is no augmenting path w.r.t. f, there is a cut (A, B) s.t. $v(f)=c(A, B)$.
Proof of Claim: Let f be a flow with no augmenting paths.
Let A be the set of vertices reachable from s in residual graph G_{f}.

- By definition of $A, s \in A$.
- Since no augmenting path ($s-t$ path in G_{f}), $t \notin A$.

Then $v(f)=\sum_{e \text { out of } A} f(e)-\sum_{e \text { into } A} f(e)$

$$
\begin{aligned}
& =\sum_{e \text { out of } A} f(e) \\
& =\sum_{e \text { out of } A} c(e)
\end{aligned}
$$

"Saturated"

Proof of Max-Flow Min-Cut Theorem

$$
(\text { (iii) } \Rightarrow(\mathrm{i}):
$$

Claim: If there is no augmenting path w.r.t. f, there is a cut (A, B) s.t. $v(f)=c(A, B)$.
Proof of Claim: Let f be a flow with no augmenting paths.
Let A be the set of vertices reachable from s in residual graph G_{f}.

- By definition of $A, s \in A$.
- Since no augmenting path (s - t path in G_{f}), $t \notin A$.

Then $v(f)=\sum_{e \text { out of } A} f(e)-\sum_{e \text { into } A} f(e)$

$$
\begin{aligned}
& =\sum_{e \text { out of } A} f(e) \\
& =\sum_{e \text { out of } A} c(e)=c(A, B)
\end{aligned}
$$

Running Time

- Computing first G_{f} takes $O(\boldsymbol{n}+\boldsymbol{m})$ time. (Can ignore disconnected bits so $\boldsymbol{m} \geq \boldsymbol{n}-\mathbf{1}$.)
- Finding each augmenting path (graph search in G_{f}) takes $O(\boldsymbol{m})$ time.
- Updating \boldsymbol{f} and G_{f} takes $O(n)$ time.

Total $O(m)$ per iteration.
Assumption: All capacities are integers between 1 and C.
Ford-Fulkerson Invariant: Every flow value $\boldsymbol{f}(\boldsymbol{e})$ and every residual capacity $\boldsymbol{c}_{\boldsymbol{f}}(\boldsymbol{e})$ remains an integer throughout the algorithm. So there is a maximum flow with only integer flows.

Theorem: The Ford-Fulkerson algorithm terminates in \leq Maxflow $<\boldsymbol{n C}$ iterations.
Proof: Capacity of cut with $A=\{s\}$ is $\leq(n-1) C$. Each augmentation increases flow value by at least 1 .
Corollary: If $C=\mathbf{1}$, Ford-Fulkerson runs in $O(m n)$ time.

Bipartite Matching

A graph $G=(\boldsymbol{V}, \boldsymbol{E})$ is bipartite iff

- Set V of vertices has two disjoint parts X and Y
- Every edge in E joins a vertex from X and a vertex from Y

Set $M \subseteq E$ is a matching in G iff no two edges in M share a vertex

Goal: Find a matching M in G of maximum size.

Differences from stable matching

- limited set of possible partners for each vertex
- sides may not be the same size
- no notion of stability; matching everything may be impossible.

Bipartite Matching

- Models assignment problems
- X represents customers, Y represents salespeople
- X represents professors, Y represents courses
- If $|X|=|Y|=n$
- G has perfect matching iff maximum matching has size \boldsymbol{n}

Bipartite Matching

Input: Bipartite graph
Goal: Find maximum size matching.

Bipartite Matching as a special case of Flow

Input: Bipartite graph

Bipartite Matching as a special case of Flow

Add new source spointing to left set, new sink t pointed to by right set.
Direct all edges from left to right with capacity 1. Compute MaxFlow.

Bipartite Matching as a special case of Flow

Add new source spointing to left set, new sink t pointed to by right set.
Direct all edges from left to right with capacity 1. Compute MaxFlow.

Correctness:

Integer flow just gives a subset of edges.

Source and sink edges imply it is a matching

Time $O(m n)$

Bipartite Matching

Input: Bipartite graph
Goal: Find maximum size matching.

Bipartite Matching as a special case of Flow

Add new source s pointing to left set, new sink t pointed to by right set.
Direct all edges from left to right with capacity 1. Compute MaxFlow.

Correctness:

Integer flow just gives a subset of edges.

Source and sink edges imply it is a matching

Time $O(m n)$

Optimality

Ford-Fulkerson Efficiency

Worst case runtime O ($\boldsymbol{m n C}$) with integer capacities $\leq C$.

- $O(\mathbf{m})$ time per iteration.
- At most $n C$ iterations.
- This is "pseudo-polynomial" running time.
- May take exponential time, even with integer capacities:

Choosing Good Augmenting Paths

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

- Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.
- If capacities are irrational, algorithm not guaranteed to terminate!

Goal: Choose augmenting paths so that:

- Can find augmenting paths efficiently.
- Few iterations.
- Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
- Max bottleneck capacity.
- Sufficiently large bottleneck capacity.
- Fewest number of edges.

Capacity Scaling

General idea:

- Choose augmenting paths P with 'large' capacity.
- Can augment flows along a path \mathbf{P} by any amount \leq bottleneck (\boldsymbol{P})
- Ford-Fulkerson still works
- Get a flow that is maximum for the high-order bits first and then add more bits later

Capacity Scaling

Capacity Scaling Bit 1

Solve flow problem with capacities with just the high-order bit:

Capacity Scaling Bit 1

Solve flow problem with capacities with just the high-order bit:

- Each edge has "capacity" ≤ 1 (equivalent to 4 here)
- Time O(mn)

Capacity Scaling Bit 1

Capacity Scaling Bit 2

Solve flow problem with capacities with the $\mathbf{2}$ high-order bits:

- Capacity of old min cut goes up by $\leq \mathbb{1}$ per edge (equivalent to 2 here) for a total residual capacity $\leq m$.

Capacity Scaling Bit 2

Solve flow problem with capacities with the $\mathbf{2}$ high-order bits:

- Capacity of old min cut goes up by ≤ 1 per edge (equivalent to 2 here) for a total residual capacity $\leq m$.
- Time $O\left(m^{2}\right)$ for $\leq m$ iterations.

Capacity Scaling Bits 1 and 2

Capacity Scaling Bit 3

Solve flow problem with capacities with all 3 bits:

- Capacity of old min cut goes up by $\leq \mathbb{1}$ per edge for a total residual capacity $\leq m$.

Capacity Scaling Bit 3

Solve flow problem with capacities with all 3 bits:

- Capacity of old min cut goes up by $\leq \mathbb{1}$ per edge for a total residual capacity $\leq m$.
- Time $O\left(m^{2}\right)$ for $\leq m$ iterations.

Capacity Scaling All Bits

Flow $=15$

Capacity Scaling All Bits

$$
\text { Flow }=15
$$

$$
\text { Cut Value = } 15
$$

Flow is a MaxFlow

Total time for capacity scaling

- Number of rounds $=\left\lceil\log _{2} C\right\rceil$ where C is the largest capacity
- Time per round $O\left(\boldsymbol{m}^{2}\right)$
- At most m augmentations per round
- $O(m)$ time per augmentation

Total time $O\left(\boldsymbol{m}^{2} \log \boldsymbol{C}\right)$

