
CSE 421

Introduction to Algorithms

Lecture 16:  Ford-Fulkerson
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Announcements

See EdStem Announcement/Email posted/sent yesterday.

Midterm next Wednesday, November 8, 6:00 – 7:30 pm in this room

• Exam designed for a regular class time-slot but this includes extra time to finish.

• Coverage: 

• Up to the end of last Thursday’s section on Dynamic Programming

• Sample midterm for practice problems and length coming later today.

• Will include “reference sheet” available to you on the midterm.

• Tomorrow’s section will focus on review problems.

• Zoom review session for Q&A on Tuesday Nov 7 at 4:30 pm.
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Flow network:

• Abstraction for material flowing through the edges.

• � = (�, �) directed graph, no parallel edges.

• Two distinguished nodes:  � = source, 	 = sink.

• �(�) = capacity of edge � ≥ 0.
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Minimum s-t cut problem:

Given: a flow network 

Find: an �-	 cut (�, �) of minimum capacity 

�
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Last time: Minimum Cut Problem
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Defn: An �-	 flow in a flow network is a function �:  � � ℝ that satisfies:

• For each � ∈ �: � ≤  � � ≤  �(�) [capacity constraints]

• For each � ∈ � − {�, 	} :

Defn: The value of flow �,

� � � = � �(�)
�

� ��� �� �

�

� !"�� �
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Last time: Flows
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Given: a flow network 

Find: an �-	 flow of maximum value
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Last time: Maximum Flow Problem
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Corollary: Let � be any �-	 flow and (�, �) be any �-	 cut. 

If � � = �(�, �) then � is a max flow and (�, �) is a min cut.
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Last time: Certificate of Optimality
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Last time: Towards a Max Flow Algorithm

What about the following greedy algorithm?

• Start with �(�)  =  � for all edges � ∈ �.

• While there is an �-	 path # where each edge has � � < �(�).

• “Augment” flow along #; that is:

• Let % = min�∈# (� � − � � )
• Add % to flow on every edge � along path #.  (Adds % to �(�).)

But this can get stuck...
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Flows and cuts so far

Let � be any �-	 flow and (�, �) be any �-	 cut:

Flow Value Lemma: The net value of the flow sent across (�, �) equals � � .

Weak Duality: The value of the flow is at most the capacity of the cut;                        

i.e., � � ≤ � �, � .    “Maxflow ≤ Mincut”

Corollary: If � � = �(�, �) then � is a maximum flow and (�, �) is a minimum cut.

Augmenting along paths using a greedy algorithm can get stuck.

Today: Ford-Fulkerson Algorithm, which applies greedy ideas to a “residual graph” 

that lets us reverse prior flow decisions from the basic greedy approach.
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Greed Revisited: Residual Graph & Augmenting Paths
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Suppose that we took this flow � as a baseline, what 

changes could each edge handle?

• We could add up to 10 units along sv or ut or uv

• We could reduce by up to 20 units from su or uv or vt

This gives us a residual graph �� of possible changes 

where we draw reducing as “sending back”.

The only way we could route more flow from s to t

would be to reduce the flow from u to v to make room 

for that amount of extra flow from s to v.

But to conserve flow we also would need to increase 

the flow from u to t by that same amount.
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Residual Graphs

Original edge:  � = *, � ∈ �.

• Flow �(�), capacity �(�).

Residual edges of two kinds:

• Forward:  � = (*, �) with capacity �� � = � � − � �
• Amount of extra flow we can add along �

• Backward: �+  = (�, *) with capacity �� � = � �
• Amount we can reduce/undo flow along �

Residual graph:  �� = (�, ��).

• Residual edges with residual capacity �� � > �.

• �� =  � ∶  � � < � � ∪ {�+:  � � >  �}.

u v6/17

u v11

residual capacity

6

residual capacity
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Residual Graphs and Augmenting Paths

Residual edges of two kinds:

• Forward:  � = (*, �) with capacity �� � = � � − � �
• Amount of extra flow we can add along �

• Backward: �+  = (�, *) with capacity �� � = � �
• Amount we can reduce/undo flow along �

Residual graph:  �� = (�, ��).

• Residual edges with residual capacity �� � > �.

• �� =  � ∶  � � < � � ∪ {�+:  � � >  �}.

Augmenting Path: Any �-	 path # in ��.         Let bottleneck(#)= min�∈#  ��(�).

Ford-Fulkerson idea: Repeat “find an augmenting path # and increase flow by bottleneck(#)” until 

none left.

u v11

residual capacity

6

residual capacity
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm

�:

��:

s

a

c

b

d t10

10/10

2/9

8/8

4

10/10

1062/2 Flow value = 10

s

a

c

b

d t10 7

4

1062

10

810

2

+6=8

+6=16

6/

6/ 6/

21



22

Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm
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Augmenting Path Algorithm

Augment(f, c, P) {

b ← bottleneck(P) 

foreach e ∈ P {

if (e ∈ E) f(e) ← f(e) + b

else f(eR)← f(eR) - b

}

return f

}

Ford-Fulkerson(G, s, t, c) {

foreach e ∈ E  f(e) ← 0

Gf ← residual graph

while (Gf has an s-t path P) {

f ← Augment(f, c, P)

update Gf
}

return f

}
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Max-Flow Min-Cut Theorem

Augmenting Path Theorem: Flow � is a max flow ⇔ there are no augmenting paths wrt �
Max-Flow Min-Cut Theorem: The value of the max flow equals the value of the min cut.

[Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] “Maxflow = Mincut”

Proof: We prove both together by showing that all of these are equivalent:

(i) There is a cut (�, �) such that �(�) = �(�, �).

(ii) Flow � is a max flow.

(iii) There is no augmenting path w.r.t. �.

(i) ⇒ (ii): We already know this by the corollary to weak duality lemma.

(ii) ⇒ (iii): (by contradiction)

If there is an augmenting path w.r.t. flow � then we can improve �. Therefore � is not a max flow.

Only (iii) ⇒ (i) remaining

29



30

Proof of Max-Flow Min-Cut Theorem

(iii) ⇒ (i):

Claim: If there is no augmenting path w.r.t. �, there is a cut (�, �) s.t. �(�) = �(�, �).

Proof of Claim: Let � be a flow with no augmenting paths.

Let � be the set of vertices reachable from � in residual graph ��.

• By definition of �, � ∈ �.

• Since no augmenting path (�-	 path in ��), 	 ∉ �.

Then

original network
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Proof of Max-Flow Min-Cut Theorem

(iii) ⇒ (i):

Claim: If there is no augmenting path w.r.t. �, there is a cut (�, �) s.t. �(�) = �(�, �).

Proof of Claim: Let � be a flow with no augmenting paths.

Let � be the set of vertices reachable from � in residual graph ��.

• By definition of �, � ∈ �.

• Since no augmenting path (�-	 path in ��), 	 ∉ �.

Then
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Proof of Max-Flow Min-Cut Theorem

(iii) ⇒ (i):

Claim: If there is no augmenting path w.r.t. �, there is a cut (�, �) s.t. �(�) = �(�, �).

Proof of Claim: Let � be a flow with no augmenting paths.

Let � be the set of vertices reachable from � in residual graph ��.

• By definition of �, � ∈ �.

• Since no augmenting path (�-	 path in ��), 	 ∉ �.

Then

original network

s

t

A B

� � = � � � − � � �                     
�

� !"�� �

�

� ��� �� �
    = � � �                             

�

� ��� �� �
= � � �                           

�

� ��� �� � � = �� � = � � − �(�)

�

“Saturated”

32



33

Proof of Max-Flow Min-Cut Theorem

(iii) ⇒ (i):

Claim: If there is no augmenting path w.r.t. �, there is a cut (�, �) s.t. �(�) = �(�, �).

Proof of Claim: Let � be a flow with no augmenting paths.

Let � be the set of vertices reachable from � in residual graph ��.

• By definition of �, � ∈ �.

• Since no augmenting path (�-	 path in ��), 	 ∉ �.

Then

original network

s
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� � = � � � − � � �                     
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Running Time

• Computing first �� takes 2(3 + 5) time.  (Can ignore disconnected bits so 5 ≥ 3 − 6.)

• Finding each augmenting path (graph search in ��) takes 2(5) time. 

• Updating � and �� takes 2(3) time.

Total 2(5) per iteration.

Assumption: All capacities are integers between 6 and 7.

Ford-Fulkerson Invariant: Every flow value �(�) and every residual capacity ��(�) remains an integer 

throughout the algorithm.   So there is a maximum flow with only integer flows.

Theorem: The Ford-Fulkerson algorithm terminates in ≤ Maxflow < 37 iterations.

Proof: Capacity of cut with � = {�} is ≤ (3 − 6)7. Each augmentation increases flow value by at least 6. 

Corollary: If 7 = 6, Ford-Fulkerson runs in 2(53) time.
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Bipartite Matching

A graph � = �, �  is bipartite iff

• Set � of vertices has two disjoint parts 8 and 9
• Every edge in � joins a vertex from 8 and a vertex from 9

Set : ⊆ � is a matching in � iff no two edges in : share a vertex

Goal: Find a matching : in � of maximum size.

Differences from stable matching 

• limited set of possible partners for each vertex

• sides may not be the same size

• no notion of stability; matching everything may be impossible.
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Bipartite Matching

• Models assignment problems

• 8 represents customers, 9 represents salespeople

• 8 represents professors, 9 represents courses

• If |8| = |9| = 3 
• � has perfect matching iff maximum matching has size 3
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Bipartite Matching

Input:  Bipartite graph

Goal: Find maximum size matching.
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Bipartite Matching as a special case of Flow

Input:  Bipartite graph
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Bipartite Matching as a special case of Flow

Add new source s pointing to left set, new sink t pointed to by right set. 

Direct all edges from left to right with capacity 1.  Compute MaxFlow.
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Bipartite Matching as a special case of Flow

Add new source s pointing to left set, new sink t pointed to by right set. 

Direct all edges from left to right with capacity 1.  Compute MaxFlow.
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Bipartite Matching

Input:  Bipartite graph

Goal: Find maximum size matching.
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Optimality
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Bipartite Matching as a special case of Flow

Add new source s pointing to left set, new sink t pointed to by right set. 

Direct all edges from left to right with capacity 1.  Compute MaxFlow.
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Worst case runtime 2 537 with integer capacities ≤ 7.

• 2(5) time per iteration.

• At most 37 iterations.

• This is “pseudo-polynomial” running time.

• May take exponential time, even with integer capacities:
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Ford-Fulkerson Efficiency
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Choosing Good Augmenting 
Paths
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Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

• Some choices lead to exponential algorithms.

• Clever choices lead to polynomial algorithms.

• If capacities are irrational, algorithm not guaranteed to terminate!

Goal: Choose augmenting paths so that:

• Can find augmenting paths efficiently.

• Few iterations.

• Choose augmenting paths with:  [Edmonds-Karp 1972, Dinitz 1970]

• Max bottleneck capacity.

• Sufficiently large bottleneck capacity.

• Fewest number of edges.
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Capacity Scaling

General idea:

• Choose augmenting paths P with ‘large’ capacity.

• Can augment flows along a path P by any amount ≤ bottleneck(#)
• Ford-Fulkerson still works

• Get a flow that is maximum for the high-order bits first and then add more bits 

later



Capacity Scaling
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Capacity Scaling Bit 1
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Solve flow problem with capacities with just the high-order bit:



Capacity Scaling Bit 1
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Solve flow problem with capacities with just the high-order bit:

• Each edge has “capacity” ≤ 6 (equivalent to > here)

• Time 2(53)

Min cut



Capacity Scaling Bit 1
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Capacity Scaling Bit 2
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Solve flow problem with capacities with the 2 high-order bits:

• Capacity of old min cut goes up by ≤ 6 per edge (equivalent to ? here) 

for a total residual capacity ≤ 5.

Old Min cut



Capacity Scaling Bit 2
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Solve flow problem with capacities with the 2 high-order bits:

• Capacity of old min cut goes up by ≤ 6 per edge (equivalent to ? here) 

for a total residual capacity ≤ 5.

• Time 2(5?) for ≤ 5 iterations.



Capacity Scaling Bits 1 and 2
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Capacity Scaling Bit 3
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Solve flow problem with capacities with all 3 bits:

• Capacity of old min cut goes up by ≤ 6 per edge for a total residual 

capacity ≤ 5.



Capacity Scaling Bit 3
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Solve flow problem with capacities with all 3 bits:

• Capacity of old min cut goes up by ≤ 6 per edge for a total residual 

capacity ≤ 5.

• Time 2(5?) for ≤ 5 iterations.
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Flow = 15

Cut Value = 15

Flow is a MaxFlow
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Total time for capacity scaling

• Number of rounds = log27 where 7 is the largest capacity

• Time per round 2(5?)
• At most 5 augmentations per round

• 2(5) time per augmentation

Total time 2(5? log 7)


