
CSE 421

Introduction to Algorithms

Lecture 16: Ford-Fulkerson

1

Announcements

See EdStem Announcement/Email posted/sent yesterday.

Midterm next Wednesday, November 8, 6:00 – 7:30 pm in this room

• Exam designed for a regular class time-slot but this includes extra time to finish.

• Coverage:

• Up to the end of last Thursday’s section on Dynamic Programming

• Sample midterm for practice problems and length coming later today.

• Will include “reference sheet” available to you on the midterm.

• Tomorrow’s section will focus on review problems.

• Zoom review session for Q&A on Tuesday Nov 7 at 4:30 pm.

2

3

Flow network:

• Abstraction for material flowing through the edges.

• � = (�, �) directed graph, no parallel edges.

• Two distinguished nodes: � = source, 	 = sink.

• �(�) = capacity of edge � ≥ 0.

Last time: Flow Network

s

a

b

c

d

e

f

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source sink

3

Minimum s-t cut problem:

Given: a flow network

Find: an �-	 cut (�, �) of minimum capacity

�

4

Last time: Minimum Cut Problem

s

a

b

c

d

e

f

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

source sink

capacity 28

� �, � = � �(�)
�

� ��� �� �

4

Defn: An �-	 flow in a flow network is a function �: � � ℝ that satisfies:

• For each � ∈ �: � ≤ � � ≤ �(�) [capacity constraints]

• For each � ∈ � − {�, 	} :

Defn: The value of flow �,

� � � = � �(�)
�

� ��� �� �

�

� !"�� �

5

Last time: Flows

s

a

b

c

d

e

f

t

11/15

3/5

11/30

15

10/10

8/8

15

6/9

1/6 10/10

8/10

6/10154/4

4

[flow conservation]

� � = � � �
�

� ��� �� �

value = 24

Only show non-zero values of �

5

Given: a flow network

Find: an �-	 flow of maximum value

6

Last time: Maximum Flow Problem

s

a

b

c

d

e

f

t

14/15

4/5

14/30

15

10/10

8/8

1/15

9/9

4/6 10/10

9/10

9/10154

4
value = 28

6

Corollary: Let � be any �-	 flow and (�, �) be any �-	 cut.

If � � = �(�, �) then � is a max flow and (�, �) is a min cut.

7

Last time: Certificate of Optimality

s

a

b

c

d

e

f

t

14/15

4/5

14/30

15

10/10

8/8

1/15

9/9

4/6 10/10

9/10

9/10154

4

Value of flow = 28

�

Capacity of cut = 28

Both are optimal!

7

8

Last time: Towards a Max Flow Algorithm

What about the following greedy algorithm?

• Start with �(�) = � for all edges � ∈ �.

• While there is an �-	 path # where each edge has � � < �(�).

• “Augment” flow along #; that is:

• Let % = min�∈# (� � − � �)
• Add % to flow on every edge � along path #. (Adds % to �(�).)

But this can get stuck...

8

Flows and cuts so far

Let � be any �-	 flow and (�, �) be any �-	 cut:

Flow Value Lemma: The net value of the flow sent across (�, �) equals � � .

Weak Duality: The value of the flow is at most the capacity of the cut;

i.e., � � ≤ � �, � . “Maxflow ≤ Mincut”

Corollary: If � � = �(�, �) then � is a maximum flow and (�, �) is a minimum cut.

Augmenting along paths using a greedy algorithm can get stuck.

Today: Ford-Fulkerson Algorithm, which applies greedy ideas to a “residual graph”

that lets us reverse prior flow decisions from the basic greedy approach.

9

� � = ∑ � � − ∑ � ��� !"�� ��� ��� �� �

Greed Revisited: Residual Graph & Augmenting Paths

10

s

u

v

t

20/20 10

10 20/20

20/30

s

u

v

t

20 10

10 20

2010

Suppose that we took this flow � as a baseline, what

changes could each edge handle?

• We could add up to 10 units along sv or ut or uv

• We could reduce by up to 20 units from su or uv or vt

This gives us a residual graph �� of possible changes

where we draw reducing as “sending back”.

The only way we could route more flow from s to t

would be to reduce the flow from u to v to make room

for that amount of extra flow from s to v.

But to conserve flow we also would need to increase

the flow from u to t by that same amount.

s

u

v

t

20 10

10 20

2010

Greed Revisited: Residual Graph & Augmenting Paths

11

s

u

v

t

20/20 10

10 20/20

20/30

s

u

v

t

20 10

10 20

2010

Residual graph

��
Path in ��

s

u

v

t

20/20 10/10

10/10 20/20

10/30

Augment flow

along path

s

u

v

t

20/20 10/10

10/10 20/20

10/30

Greed Revisited: Residual Graph & Augmenting Paths

12

s

u

v

t

20 10

10 20

1020

New residual

graph ��
No �-	 path

BTW: Flow is optimal

13

Residual Graphs

Original edge: � = *, � ∈ �.

• Flow �(�), capacity �(�).

Residual edges of two kinds:

• Forward: � = (*, �) with capacity �� � = � � − � �
• Amount of extra flow we can add along �

• Backward: �+ = (�, *) with capacity �� � = � �
• Amount we can reduce/undo flow along �

Residual graph: �� = (�, ��).

• Residual edges with residual capacity �� � > �.

• �� = � ∶ � � < � � ∪ {�+: � � > �}.

u v6/17

u v11

residual capacity

6

residual capacity

13

14

Residual Graphs and Augmenting Paths

Residual edges of two kinds:

• Forward: � = (*, �) with capacity �� � = � � − � �
• Amount of extra flow we can add along �

• Backward: �+ = (�, *) with capacity �� � = � �
• Amount we can reduce/undo flow along �

Residual graph: �� = (�, ��).

• Residual edges with residual capacity �� � > �.

• �� = � ∶ � � < � � ∪ {�+: � � > �}.

Augmenting Path: Any �-	 path # in ��. Let bottleneck(#)= min�∈# ��(�).

Ford-Fulkerson idea: Repeat “find an augmenting path # and increase flow by bottleneck(#)” until

none left.

u v11

residual capacity

6

residual capacity

14

15

Ford-Fulkerson Algorithm

�:

s

a

c

b

d t10

10

9

8

4

10

1062

capacity

15

16

Ford-Fulkerson Algorithm

�:

��:

s

a

c

b

d t10

10

9

8

4

10

1062 Flow value = 0

s

a

c

b

d t10

10

9

8

4

10

1062

residual capacity

capacity
0 flows not shown

16

17

Ford-Fulkerson Algorithm

�:

��:

s

a

c

b

d t10

10

9

8

4

10

1062 Flow value = 0

s

a

c

b

d t10

10

9

8

4

10

1062

residual capacity

capacity
0 flows not shown

8/
8/

8/

+8=8

17

18

Ford-Fulkerson Algorithm

�:

��:

s

a

c

b

d t10

8/10

9

8/8

4

8/10

1062

s

a

c

b

d t10 9

4

1062

2

82

8

8

Flow value = 8

18

19

Ford-Fulkerson Algorithm

�:

��:

s

a

c

b

d t10

8/10

9

8/8

4

8/10

1062

s

a

c

b

d t10 9

4

1062

2

82

8

8

Flow value = 8

2/

2/

+2=10

+2=10

+2=10

19

20

Ford-Fulkerson Algorithm

�:

��:

s

a

c

b

d t10

10/10

2/9

8/8

4

10/10

1062/2 Flow value = 10

s

a

c

b

d t10 7

4

1062

10

810

2

20

21

Ford-Fulkerson Algorithm

�:

��:

s

a

c

b

d t10

10/10

2/9

8/8

4

10/10

1062/2 Flow value = 10

s

a

c

b

d t10 7

4

1062

10

810

2

+6=8

+6=16

6/

6/ 6/

21

22

Ford-Fulkerson Algorithm

�:

��:

s

a

c

b

d t6/10

10/10

8/9

8/8

4

10/10

6/106/62/2 Flow value = 16

s

a

c

b

d t4 1

4

462

10

810

86

6

22

23

Ford-Fulkerson Algorithm

�:

��:

s

a

c

b

d t6/10

10/10

8/9

8/8

4

10/10

6/106/6
Flow value = 16

s

a

c

b

d t4 1

4

462

10

810

86

6

+2=18

+2=8

-2=0 +2=8
2/2

2/

23

24

Ford-Fulkerson Algorithm

�:

��:

s

a

c

b

d t8/10

10/10

8/9

8/8

2/4

10/10

8/106/62

s

a

c

b

d t2 1

2

262

10

810

8

8

2

8

Flow value = 18

24

25

Ford-Fulkerson Algorithm

�:

��:

s

a

c

b

d t8/10

10/10

8/9

8/8

2/4

10/10

8/106/62

s

a

c

b

d t2 1

2

262

10

810

8

8

2

8

Flow value = 18

+1=9 +1=9

-1=7

+1=3

+1=9
+1=19

25

26

Ford-Fulkerson Algorithm

�:

��:

s

a

c

b

d t9/10

10/10

9/9

7/8

3/4

10/10

9/106/62

s

a

c

b

d t1 9

1

162

10

710

9

9

3

1

Flow value = 19

26

27

Ford-Fulkerson Algorithm

�:

��:

s

a

c

b

d t9/10

10/10

9/9

7/8

3/4

10/10

9/106/62

s

a

c

b

d t1 9

1

162

10

710

9

9

3

1

Flow value = 19

Cut capacity = 19

27

28

Augmenting Path Algorithm

Augment(f, c, P) {

b ← bottleneck(P)

foreach e ∈ P {

if (e ∈ E) f(e) ← f(e) + b

else f(eR)← f(eR) - b

}

return f

}

Ford-Fulkerson(G, s, t, c) {

foreach e ∈ E f(e) ← 0

Gf ← residual graph

while (Gf has an s-t path P) {

f ← Augment(f, c, P)

update Gf
}

return f

}

28

29

Max-Flow Min-Cut Theorem

Augmenting Path Theorem: Flow � is a max flow ⇔ there are no augmenting paths wrt �
Max-Flow Min-Cut Theorem: The value of the max flow equals the value of the min cut.

[Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] “Maxflow = Mincut”

Proof: We prove both together by showing that all of these are equivalent:

(i) There is a cut (�, �) such that �(�) = �(�, �).

(ii) Flow � is a max flow.

(iii) There is no augmenting path w.r.t. �.

(i) ⇒ (ii): We already know this by the corollary to weak duality lemma.

(ii) ⇒ (iii): (by contradiction)

If there is an augmenting path w.r.t. flow � then we can improve �. Therefore � is not a max flow.

Only (iii) ⇒ (i) remaining

29

30

Proof of Max-Flow Min-Cut Theorem

(iii) ⇒ (i):

Claim: If there is no augmenting path w.r.t. �, there is a cut (�, �) s.t. �(�) = �(�, �).

Proof of Claim: Let � be a flow with no augmenting paths.

Let � be the set of vertices reachable from � in residual graph ��.

• By definition of �, � ∈ �.

• Since no augmenting path (�-	 path in ��), 	 ∉ �.

Then

original network

s

t

A B

� � = � � � − � � �
�

� !"�� �

�

� ��� �� �

30

31

Proof of Max-Flow Min-Cut Theorem

(iii) ⇒ (i):

Claim: If there is no augmenting path w.r.t. �, there is a cut (�, �) s.t. �(�) = �(�, �).

Proof of Claim: Let � be a flow with no augmenting paths.

Let � be the set of vertices reachable from � in residual graph ��.

• By definition of �, � ∈ �.

• Since no augmenting path (�-	 path in ��), 	 ∉ �.

Then

original network

s

t

A B

� � = � � � − � � �
�

� !"�� �

�

� ��� �� �
 = � � �

�

� ��� �� �

� = �� �+ = �(�)

�

No flow

31

32

Proof of Max-Flow Min-Cut Theorem

(iii) ⇒ (i):

Claim: If there is no augmenting path w.r.t. �, there is a cut (�, �) s.t. �(�) = �(�, �).

Proof of Claim: Let � be a flow with no augmenting paths.

Let � be the set of vertices reachable from � in residual graph ��.

• By definition of �, � ∈ �.

• Since no augmenting path (�-	 path in ��), 	 ∉ �.

Then

original network

s

t

A B

� � = � � � − � � �
�

� !"�� �

�

� ��� �� �
 = � � �

�

� ��� �� �
= � � �

�

� ��� �� � � = �� � = � � − �(�)

�

“Saturated”

32

33

Proof of Max-Flow Min-Cut Theorem

(iii) ⇒ (i):

Claim: If there is no augmenting path w.r.t. �, there is a cut (�, �) s.t. �(�) = �(�, �).

Proof of Claim: Let � be a flow with no augmenting paths.

Let � be the set of vertices reachable from � in residual graph ��.

• By definition of �, � ∈ �.

• Since no augmenting path (�-	 path in ��), 	 ∉ �.

Then

original network

s

t

A B

� � = � � � − � � �
�

� !"�� �

�

� ��� �� �
 = � � �

�

� ��� �� �
= � � � = �(�, �)

�

� ��� �� �

33

34

Running Time

• Computing first �� takes 2(3 + 5) time. (Can ignore disconnected bits so 5 ≥ 3 − 6.)

• Finding each augmenting path (graph search in ��) takes 2(5) time.

• Updating � and �� takes 2(3) time.

Total 2(5) per iteration.

Assumption: All capacities are integers between 6 and 7.

Ford-Fulkerson Invariant: Every flow value �(�) and every residual capacity ��(�) remains an integer

throughout the algorithm. So there is a maximum flow with only integer flows.

Theorem: The Ford-Fulkerson algorithm terminates in ≤ Maxflow < 37 iterations.

Proof: Capacity of cut with � = {�} is ≤ (3 − 6)7. Each augmentation increases flow value by at least 6.

Corollary: If 7 = 6, Ford-Fulkerson runs in 2(53) time.

34

35

Bipartite Matching

A graph � = �, � is bipartite iff

• Set � of vertices has two disjoint parts 8 and 9
• Every edge in � joins a vertex from 8 and a vertex from 9

Set : ⊆ � is a matching in � iff no two edges in : share a vertex

Goal: Find a matching : in � of maximum size.

Differences from stable matching

• limited set of possible partners for each vertex

• sides may not be the same size

• no notion of stability; matching everything may be impossible.

36

Bipartite Matching

• Models assignment problems

• 8 represents customers, 9 represents salespeople

• 8 represents professors, 9 represents courses

• If |8| = |9| = 3
• � has perfect matching iff maximum matching has size 3

37

Bipartite Matching

Input: Bipartite graph

Goal: Find maximum size matching.

C

1

5

2

A

E

3

B

D 4

38

Bipartite Matching as a special case of Flow

Input: Bipartite graph

C

1

5

2

A

E

3

B

D 4

39

Bipartite Matching as a special case of Flow

Add new source s pointing to left set, new sink t pointed to by right set.

Direct all edges from left to right with capacity 1. Compute MaxFlow.

C

1

5

2

A

E

3

B

D 4

s

1

1

1
1

1
1

1
1

1

t

1

1

1

1

1

1

1

1

1

1

40

Bipartite Matching as a special case of Flow

Add new source s pointing to left set, new sink t pointed to by right set.

Direct all edges from left to right with capacity 1. Compute MaxFlow.

C

1

5

2

A

E

3

B

D 4

s

1

1/1 1

1

1

t

1/1

1/1

1

1

1/1

1/1 1/1

1/1

1/1

1/1

1/1
1/1

1

1/1

Time 2(53)
Correctness:

Integer flow just

gives a subset of

edges.

Source and sink

edges imply it is

a matching

41

Bipartite Matching

Input: Bipartite graph

Goal: Find maximum size matching.

C

1

5

2

A

E

3

B

D 4

Optimality

42

Bipartite Matching as a special case of Flow

Add new source s pointing to left set, new sink t pointed to by right set.

Direct all edges from left to right with capacity 1. Compute MaxFlow.

C

1

5

2

A

E

3

B

D 4

s

1

1/1 1

1

1

t

1/1

1/1

1

1

1/1

1/1 1/1

1/1

1/1

1/1

1/1
1/1

1

1/1

Time 2(53)
Correctness:

Integer flow just

gives a subset of

edges.

Source and sink

edges imply it is

a matching
Optimality

Worst case runtime 2 537 with integer capacities ≤ 7.

• 2(5) time per iteration.

• At most 37 iterations.

• This is “pseudo-polynomial” running time.

• May take exponential time, even with integer capacities:

s
c

a

t

b

c-1

c
1

c-1

1

1

43

Ford-Fulkerson Efficiency

s
c

a

t

b

c

c
1

c

c = 6�=, say

�� = �

s
c-1

a

t

b

c-1

c-1
1

c-1

1

1
1

1

etc.

Choosing Good Augmenting
Paths

44

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

• Some choices lead to exponential algorithms.

• Clever choices lead to polynomial algorithms.

• If capacities are irrational, algorithm not guaranteed to terminate!

Goal: Choose augmenting paths so that:

• Can find augmenting paths efficiently.

• Few iterations.

• Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]

• Max bottleneck capacity.

• Sufficiently large bottleneck capacity.

• Fewest number of edges.

45

46

Capacity Scaling

General idea:

• Choose augmenting paths P with ‘large’ capacity.

• Can augment flows along a path P by any amount ≤ bottleneck(#)
• Ford-Fulkerson still works

• Get a flow that is maximum for the high-order bits first and then add more bits

later

Capacity Scaling

47

6

7 4

1

5

s

a

b

c

x

y

z

t

5

4

33

7

64

Capacity Scaling Bit 1

48

s

a

b

c

x

y

z

t

101

110

111

100

011

100

001

101

011

111

110
100

Solve flow problem with capacities with just the high-order bit:

Capacity Scaling Bit 1

49

s

a

b

c

x

y

z

t

101

1/110

1/111

100

011

1/100

001

1/101

011

1/111

1/110
100

Solve flow problem with capacities with just the high-order bit:

• Each edge has “capacity” ≤ 6 (equivalent to > here)

• Time 2(53)

Min cut

Capacity Scaling Bit 1

50

4/6

4/7 4/4

1

4/5

s

a

b

c

x

y

z

t

5

4

33

4/7

4/64

Capacity Scaling Bit 2

51

s

a

b

c

x

y

z

t

101

10/110

10/111

100

011

10/100

001

10/101

011

10/111

10/110
100

Solve flow problem with capacities with the 2 high-order bits:

• Capacity of old min cut goes up by ≤ 6 per edge (equivalent to ? here)

for a total residual capacity ≤ 5.

Old Min cut

Capacity Scaling Bit 2

52

s

a

b

c

x

y

z

t

10/101

10/110

10/111

01/100

01/011

10/100

001

10/101

01/011

11/111

10/110
100

Solve flow problem with capacities with the 2 high-order bits:

• Capacity of old min cut goes up by ≤ 6 per edge (equivalent to ? here)

for a total residual capacity ≤ 5.

• Time 2(5?) for ≤ 5 iterations.

Capacity Scaling Bits 1 and 2

53

4/6

4/7 4/4

1

4/5

s

a

b

c

x

y

z

t

4/5

2/4

2/32/3

6/7

4/64

Capacity Scaling Bit 3

54

s

a

b

c

x

y

z

t

100/101

100/110

100/111

010/100

010/011

100/100

001

100/101

010/011

110/111

100/110
100

Solve flow problem with capacities with all 3 bits:

• Capacity of old min cut goes up by ≤ 6 per edge for a total residual

capacity ≤ 5.

Capacity Scaling Bit 3

55

101/111
s

a

b

c

x

y

z

t

101/101

101/110

010/100

011/011

100/100

001/001

101/101

010/011

111/111

110/110
100

Solve flow problem with capacities with all 3 bits:

• Capacity of old min cut goes up by ≤ 6 per edge for a total residual

capacity ≤ 5.

• Time 2(5?) for ≤ 5 iterations.

Capacity Scaling All Bits

56

5/6

5/7 4/4

1/1

5/5

s

a

b

c

x

y

z

t

5/5

2/4

2/33/3

7/7

6/64

Flow = 15

Capacity Scaling All Bits

57

5/6

5/7 4/4

1/1

5/5

s

a

b

c

x

y

z

t

5/5

2/4

2/33/3

7/7

6/64

Flow = 15

Cut Value = 15

Flow is a MaxFlow

58

Total time for capacity scaling

• Number of rounds = log27 where 7 is the largest capacity

• Time per round 2(5?)
• At most 5 augmentations per round

• 2(5) time per augmentation

Total time 2(5? log 7)

