Lecture 16: Ford-Fulkerson
Announcements

See EdStem Announcement/Email posted/sent yesterday.

Midterm next **Wednesday, November 8, 6:00 – 7:30 pm in this room**

- Exam designed for a regular class time-slot but this includes extra time to finish.
- Coverage:
 - Up to the end of last Thursday’s section on Dynamic Programming

- Sample midterm for practice problems and length coming later today.
 - Will include “reference sheet” available to you on the midterm.

- Tomorrow’s section will focus on review problems.

- Zoom review session for Q&A on Tuesday Nov 7 at 4:30 pm.
Last time: Flow Network

Flow network:

- Abstraction for material \textit{flowing} through the edges.
- \(G = (V, E) \) directed graph, no parallel edges.
- Two distinguished nodes: \(s = \text{source}, \ t = \text{sink} \).
- \(c(e) = \text{capacity of edge } e \geq 0 \).
Minimum s-t cut problem:

Given: a flow network

Find: an \(s-t \) cut \((A, B)\) of minimum capacity

\[
c(A, B) = \sum_{e \text{ out of } A} c(e)
\]
Last time: Flows

Defn: An \textbf{s-t flow} in a flow network is a function \(f : E \to \mathbb{R} \) that satisfies:

- For each \(e \in E: 0 \leq f(e) \leq c(e) \) \hspace{1cm} \text{[capacity constraints]}

- For each \(v \in V - \{s, t\}: \sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e) \) \hspace{1cm} \text{[flow conservation]}

Defn: The \textbf{value} of flow \(f \),
\[
\nu(f) = \sum_{e \text{ out of } s} f(e)
\]

Only show non-zero values of \(f \)

value = 24
Given: a flow network
Find: an s-t flow of maximum value

Last time: Maximum Flow Problem

value = 28
Corollary: Let f be any $s\!-\!t$ flow and (A, B) be any $s\!-\!t$ cut.

If $\nu(f) = c(A, B)$ then f is a max flow and (A, B) is a min cut.

Value of flow = 28

Capacity of cut = 28

Both are optimal!
Last time: Towards a Max Flow Algorithm

What about the following greedy algorithm?

- Start with $f(e) = 0$ for all edges $e \in E$.
- While there is an s-t path P where each edge has $f(e) < c(e)$.
 - “Augment” flow along P; that is:
 - Let $\alpha = \min_{e \in P} (c(e) - f(e))$
 - Add α to flow on every edge e along path P. (Adds α to $v(f)$.)

But this can get stuck...
Flows and cuts so far

Let f be any s-t flow and (A, B) be any s-t cut:

Flow Value Lemma: The net value of the flow sent across (A, B) equals $v(f)$.

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

Weak Duality: The value of the flow is at most the capacity of the cut; i.e., $v(f) \leq c(A, B)$. “Maxflow \leq Mincut”

Corollary: If $v(f) = c(A, B)$ then f is a maximum flow and (A, B) is a minimum cut.

Augmenting along paths using a greedy algorithm can get stuck.

Today: Ford-Fulkerson Algorithm, which applies greedy ideas to a “residual graph” that lets us reverse prior flow decisions from the basic greedy approach.
Suppose that we took this flow f as a baseline, what changes could each edge handle?

- We could add up to 10 units along sv or ut or uv
- We could reduce by up to 20 units from su or uv or vt

This gives us a residual graph G_f of possible changes where we draw reducing as “sending back”.

The only way we could route more flow from s to t would be to reduce the flow from u to v to make room for that amount of extra flow from s to v. But to conserve flow we also would need to increase the flow from u to t by that same amount.
Greed Revisited: Residual Graph & Augmenting Paths

Residual graph G_f

Augment flow along path

Path in G_f
Greed Revisited: Residual Graph & Augmenting Paths

New residual graph G_f

No $s-t$ path

BTW: Flow is optimal
Residual Graphs

Original edge: $e = (u, v) \in E$.
- Flow $f(e)$, capacity $c(e)$.

Residual edges of two kinds:
- Forward: $e = (u, v)$ with capacity $c_f(e) = c(e) - f(e)$
 - Amount of extra flow we can add along e
- Backward: $e^R = (v, u)$ with capacity $c_f(e) = f(e)$
 - Amount we can reduce/undo flow along e

Residual graph: $G_f = (V, E_f)$.
- Residual edges with residual capacity $c_f(e) > 0$.
- $E_f = \{e : f(e) < c(e)\} \cup \{e^R : f(e) > 0\}$.
Residual Graphs and Augmenting Paths

Residual edges of two kinds:

- **Forward**: $e = (u, v)$ with capacity $c_f(e) = c(e) - f(e)$
 - Amount of extra flow we can add along e
- **Backward**: $e^R = (v, u)$ with capacity $c_f(e) = f(e)$
 - Amount we can reduce/undo flow along e

Residual graph: $G_f = (V, E_f)$.

- Residual edges with residual capacity $c_f(e) > 0$.
- $E_f = \{e : f(e) < c(e)\} \cup \{e^R : f(e) > 0\}$.

Augmenting Path: Any s-t path P in G_f. Let $\text{bottleneck}(P) = \min_{e \in P} c_f(e)$.

Ford-Fulkerson idea: Repeat “find an augmenting path P and increase flow by $\text{bottleneck}(P)$” until none left.
Ford-Fulkerson Algorithm

$G:$

![Graph Diagram]
Ford-Fulkerson Algorithm

G:

G_f:

Flow value = 0

residual capacity

0 flows not shown
Ford-Fulkerson Algorithm

\[G: \]

\[G_f: \]

Flow value = 0
+8=8
Ford-Fulkerson Algorithm

G:

G_f:

Flow value = 8
Ford-Fulkerson Algorithm

G:
Flow value = $8 + 2 = 10$

G_f:
Flow value = 8
Ford-Fulkerson Algorithm

G:

G_f:

Flow value = 10
Ford-Fulkerson Algorithm

G:

G_f:

Flow value = 10 + 6 = 16
Ford-Fulkerson Algorithm

G:

G_f:

Flow value = 16
Ford-Fulkerson Algorithm

\(G:\)

\(G_f:\)

Flow value = 16
+ 2 = 18
Ford-Fulkerson Algorithm

G:

G_f:

Flow value = 18
Ford-Fulkerson Algorithm

\[G: \]

\[G_f: \]

Flow value = 18
+1=19
Ford-Fulkerson Algorithm

G:

G_f:

Flow value = 19
Ford-Fulkerson Algorithm

G:

G_f:

Flow value = 19

Cut capacity = 19
Augmenting Path Algorithm

Ford-Fulkerson(G, s, t, c) {
 foreach $e \in E$ $f(e) \leftarrow 0$
 $G_f \leftarrow$ residual graph

 while (G_f has an s–t path P) {
 $f \leftarrow$ Augment(f, c, P)
 update G_f
 }
 return f
}

Augment(f, c, P) {
 $b \leftarrow$ bottleneck(P)
 foreach $e \in P$ {
 if ($e \in E$) $f(e) \leftarrow f(e) + b$
 else $f(e^R) \leftarrow f(e^R) - b$
 }
 return f
}
Max-Flow Min-Cut Theorem

Augmenting Path Theorem: Flow f is a max flow \iff there are no augmenting paths wrt f

Proof: We prove both together by showing that all of these are equivalent:

(i) There is a cut (A, B) such that $v(f) = c(A, B)$.

(ii) Flow f is a max flow.

(iii) There is no augmenting path w.r.t. f.

(i) \Rightarrow (ii): We already know this by the corollary to weak duality lemma.

(ii) \Rightarrow (iii): (by contradiction)

If there is an augmenting path w.r.t. flow f then we can improve f. Therefore f is not a max flow.
Proof of Max-Flow Min-Cut Theorem

(iii) ⇒ (i):

Claim: If there is no augmenting path w.r.t. f, there is a cut (A, B) s.t. $v(f) = c(A, B)$.

Proof of Claim: Let f be a flow with no augmenting paths.

Let A be the set of vertices reachable from s in residual graph G_f.

- By definition of A, $s \in A$.
- Since no augmenting path (s-t path in G_f), $t \not\in A$.

Then $v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$

original network
Proof of Max-Flow Min-Cut Theorem

(iii) ⇒ (i):

Claim: If there is no augmenting path w.r.t. \(f \), there is a cut \((A, B)\) s.t. \(v(f) = c(A, B) \).

Proof of Claim: Let \(f \) be a flow with no augmenting paths.

Let \(A \) be the set of vertices reachable from \(s \) in residual graph \(G_f \).

- By definition of \(A \), \(s \in A \).
- Since no augmenting path (\(s-t \) path in \(G_f \)), \(t \notin A \).

Then
\[
v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)
= \sum_{e \text{ out of } A} f(e)
\]

No flow
\[0 = c_f(e^R) = f(e)\]
Proof of Max-Flow Min-Cut Theorem

(iii) ⇒ (i):

Claim: If there is no augmenting path w.r.t. \(f \), there is a cut \((A, B)\) s.t. \(v(f) = c(A, B) \).

Proof of Claim: Let \(f \) be a flow with no augmenting paths.

Let \(A \) be the set of vertices reachable from \(s \) in residual graph \(G_f \).

- By definition of \(A \), \(s \in A \).
- Since no augmenting path (\(s-t \) path in \(G_f \), \(t \notin A \).

Then

\[
v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)
\]

\[
= \sum_{e \text{ out of } A} f(e)
\]

\[
= \sum_{e \text{ out of } A} c(e)
\]

\[0 = c_f(e) = c(e) - f(e)\]

“Saturated”
Proof of Max-Flow Min-Cut Theorem

(iii) ⇒ (i):

Claim: If there is no augmenting path w.r.t. \(f \), there is a cut \((A, B)\) s.t. \(v(f) = c(A, B) \).

Proof of Claim: Let \(f \) be a flow with no augmenting paths.

- Let \(A \) be the set of vertices reachable from \(s \) in residual graph \(G_f \).
 - By definition of \(A \), \(s \in A \).
 - Since no augmenting path (\(s-t \) path in \(G_f \)), \(t \notin A \).

Then
\[
v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)
\]
\[
= \sum_{e \text{ out of } A} f(e)
\]
\[
= \sum_{e \text{ out of } A} c(e) = c(A, B)
\]

original network
Running Time

- Computing first \(G_f \) takes \(O(n + m) \) time. (Can ignore disconnected bits so \(m \geq n - 1 \).)
- Finding each augmenting path (graph search in \(G_f \)) takes \(O(m) \) time.
- Updating \(f \) and \(G_f \) takes \(O(n) \) time.

Total \(O(m) \) per iteration.

Assumption: All capacities are integers between \(1 \) and \(C \).

Ford-Fulkerson Invariant: Every flow value \(f(e) \) and every residual capacity \(c_f(e) \) remains an integer throughout the algorithm. So there is a maximum flow with only integer flows.

Theorem: The Ford-Fulkerson algorithm terminates in \(\leq \text{Maxflow} < nC \) iterations.

Proof: Capacity of cut with \(A = \{s\} \) is \(\leq (n - 1)C \). Each augmentation increases flow value by at least \(1 \).

Corollary: If \(C = 1 \), Ford-Fulkerson runs in \(O(mn) \) time.
Bipartite Matching

A graph $G = (V, E)$ is bipartite iff

- Set V of vertices has two disjoint parts X and Y
- Every edge in E joins a vertex from X and a vertex from Y

Set $M \subseteq E$ is a matching in G iff no two edges in M share a vertex

Goal: Find a matching M in G of maximum size.

Differences from stable matching

- limited set of possible partners for each vertex
- sides may not be the same size
- no notion of stability; matching everything may be impossible.
Bipartite Matching

• Models assignment problems
 • \(X \) represents customers, \(Y \) represents salespeople
 • \(X \) represents professors, \(Y \) represents courses

• If \(|X| = |Y| = n\)
 • \(G \) has perfect matching iff maximum matching has size \(n \)
Bipartite Matching

Input: Bipartite graph

Goal: Find *maximum size* matching.
Bipartite Matching as a special case of Flow

Input: Bipartite graph
Bipartite Matching as a special case of Flow

Add new source s pointing to left set, new sink t pointed to by right set.
Direct all edges from left to right with capacity 1. Compute MaxFlow.
Bipartite Matching as a special case of Flow

Add new source s pointing to left set, new sink t pointed to by right set.
Direct all edges from left to right with capacity 1. Compute MaxFlow.

Correctness:
Integer flow just gives a subset of edges.
Source and sink edges imply it is a matching

Time $O(mn)$
Bipartite Matching

Input: Bipartite graph

Goal: Find **maximum size** matching.
Bipartite Matching as a special case of Flow

Add new source \(s \) pointing to left set, new sink \(t \) pointed to by right set. Direct all edges from left to right with capacity 1. Compute MaxFlow.

Correctness:
Integer flow just gives a subset of edges.
Source and sink edges imply it is a matching

Optimality

Time \(O(mn) \)
Ford-Fulkerson Efficiency

Worst case runtime $O(mnC)$ with integer capacities $\leq C$.

- $O(m)$ time per iteration.
- At most nC iterations.
- This is “pseudo-polynomial” running time.

- May take exponential time, even with integer capacities:

$c = 10^9$, say

$G_f = G$ etc.
Choosing Good Augmenting Paths
Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

- Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.
- If capacities are irrational, algorithm not guaranteed to terminate!

Goal: Choose augmenting paths so that:

- Can find augmenting paths efficiently.
- Few iterations.
- Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
 - Max bottleneck capacity.
 - Sufficiently large bottleneck capacity.
 - Fewest number of edges.
Capacity Scaling

General idea:

• Choose augmenting paths P with ‘large’ capacity.

• Can augment flows along a path P by any amount $\leq \text{bottleneck}(P)$
 • Ford-Fulkerson still works

• Get a flow that is maximum for the high-order bits first and then add more bits later
Capacity Scaling
Capacity Scaling Bit 1

Solve flow problem with capacities with just the high-order bit:
Capacity Scaling Bit 1

Solve flow problem with capacities with just the high-order bit:
- Each edge has “capacity” ≤ 1 (equivalent to 4 here)
- Time $O(mn)$
Capacity Scaling Bit 1
Solve flow problem with capacities with the 2 high-order bits:

- Capacity of old min cut goes up by \(\leq 1 \) per edge (equivalent to 2 here) for a total residual capacity \(\leq m \).
Solve flow problem with capacities with the 2 high-order bits:

• Capacity of old min cut goes up by ≤ 1 per edge (equivalent to 2 here) for a total residual capacity $\leq m$.

• Time $O(m^2)$ for $\leq m$ iterations.
Capacity Scaling Bits 1 and 2
Solve flow problem with capacities with all 3 bits:

- Capacity of old min cut goes up by \(\leq 1 \) per edge for a total residual capacity \(\leq m \).
Solve flow problem with capacities with all 3 bits:

- Capacity of old min cut goes up by \(\leq 1 \) per edge for a total residual capacity \(\leq m \).
- Time \(O(m^2) \) for \(\leq m \) iterations.
Capacity Scaling All Bits

Flow = 15
Capacity Scaling All Bits

Flow = 15
Cut Value = 15
Flow is a MaxFlow
Total time for capacity scaling

- Number of rounds = \([\log_2 C]\) where \(C\) is the largest capacity
- Time per round \(O(m^2)\)
 - At most \(m\) augmentations per round
 - \(O(m)\) time per augmentation

Total time \(O(m^2 \log C)\)