CSE 421 Introduction to Algorithms

Lecture 16: Ford-Fulkerson

W PAUL G. ALLEN SCHOOL of computer science & engineering

Announcements

See EdStem Announcement/Email posted/sent yesterday.

Midterm next Wednesday, November 8, 6:00 – 7:30 pm in this room

- Exam designed for a regular class time-slot but this includes extra time to finish.
- Coverage:
 - Up to the end of last Thursday's section on Dynamic Programming
- Sample midterm for practice problems and length coming later today.
 - Will include "reference sheet" available to you on the midterm.
- Tomorrow's section will focus on review problems.
- Zoom review session for Q&A on Tuesday Nov 7 at 4:30 pm.

Last time: Flow Network

Flow network:

- Abstraction for material *flowing* through the edges.
- G = (V, E) directed graph, no parallel edges.
- Two distinguished nodes: **s** = source, **t** = sink.
- c(e) = capacity of edge $e \ge 0$.

Last time: Minimum Cut Problem

Last time: Flows

Defn: An *s*-*t* flow in a flow network is a function $f: E \to \mathbb{R}$ that satisfies:

• For each $e \in E$: $0 \leq f(e) \leq c(e)$

[capacity constraints]

Last time: Maximum Flow Problem

Given: a flow network **Find:** an *s*-*t* flow of maximum value

Last time: Certificate of Optimality

Corollary: Let **f** be any **s**-**t** flow and (**A**, **B**) be any **s**-**t** cut.

If v(f) = c(A, B) then f is a max flow and (A, B) is a min cut.

Last time: Towards a Max Flow Algorithm

What about the following greedy algorithm?

- Start with f(e) = 0 for all edges $e \in E$.
- While there is an s-t path P where each edge has f(e) < c(e).
 - "Augment" flow along **P**; that is:
 - Let $\alpha = \min_{e \in P} (c(e) f(e))$
 - Add α to flow on every edge *e* along path *P*. (Adds α to v(f).)

But this can get stuck...

Flows and cuts so far

Let **f** be any **s**-**t** flow and (**A**, **B**) be any **s**-**t** cut:

Flow Value Lemma: The net value of the flow sent across (A, B) equals v(f). $v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$

Weak Duality: The value of the flow is at most the capacity of the cut; i.e., $v(f) \le c(A, B)$. "Maxflow \le Mincut"

Corollary: If v(f) = c(A, B) then f is a maximum flow and (A, B) is a minimum cut.

Augmenting along paths using a greedy algorithm can get stuck.

Today: Ford-Fulkerson Algorithm, which applies greedy ideas to a "residual graph" that lets us reverse prior flow decisions from the basic greedy approach.

Greed Revisited: Residual Graph & Augmenting Paths

The only way we could route more flow from **s** to **t** would be to reduce the flow from **u** to **v** to make room for that amount of extra flow from **s** to **v**. But to conserve flow we also would need to increase the flow from **u** to **t** by that same amount.

Suppose that we took this flow **f** as a baseline, what changes could each edge handle?

- We could add up to 10 units along sv or ut or uv
- We could reduce by up to 20 units from **su** or **uv** or **vt** This gives us a residual graph G_f of possible changes where we draw reducing as "sending back".

Greed Revisited: Residual Graph & Augmenting Paths

Greed Revisited: Residual Graph & Augmenting Paths

No *s*-*t* path

BTW: Flow is optimal

Residual Graphs

Original edge: $e = (u, v) \in E$.

• Flow *f*(*e*), capacity *c*(*e*).

- Forward: e = (u, v) with capacity $c_f(e) = c(e) f(e)$
 - Amount of extra flow we can add along e
- Backward: $e^{R} = (v, u)$ with capacity $c_{f}(e) = f(e)$
 - Amount we can reduce/undo flow along e

Residual graph: $G_f = (V, E_f)$.

- Residual edges with residual capacity $c_f(e) > 0$.
- $E_f = \{e : f(e) < c(e)\} \cup \{e^{\mathbb{R}} : f(e) > 0\}.$

Residual Graphs and Augmenting Paths

Residual edges of two kinds:

- Forward: e = (u, v) with capacity $c_f(e) = c(e) f(e)$
 - Amount of extra flow we can add along e
- Backward: $e^{R} = (v, u)$ with capacity $c_{f}(e) = f(e)$
 - Amount we can reduce/undo flow along e

Residual graph: $G_f = (V, E_f)$.

- Residual edges with residual capacity $c_f(e) > 0$.
- $E_f = \{e : f(e) < c(e)\} \cup \{e^{\mathbb{R}} : f(e) > 0\}.$

residual capacity

Augmenting Path: Any *s*-*t* path *P* in G_f . Let bottleneck(*P*) = $\min_{e \in P} c_f(e)$.

Ford-Fulkerson idea: Repeat "find an augmenting path *P* and increase flow by bottleneck(*P*)" until none left.

 $W_{15}^{PAUL G. ALLEN SCHOOL}$

PAUL G. ALLEN SCHOOL

PAUL G. ALLEN SCHOOL 22 of computer science & engineering

PAUL G. ALLEN SCHOOL 23 of computer science & engineering

PAUL G. ALLEN SCHOOL 24 of computer science & engineering

PAUL G. ALLEN SCHOOL 25 of computer science & engineering

PAUL G. ALLEN SCHOOL

PAUL G. ALLEN SCHOOL 27 of computer science & engineering

Augmenting Path Algorithm

```
Ford-Fulkerson(G, s, t, c) {
   foreach e \in E f(e) \leftarrow 0
   G<sub>f</sub> \leftarrow residual graph
   while (G<sub>f</sub> has an s-t path P) {
      f \leftarrow Augment(f, c, P)
      update G<sub>f</sub>
   }
   return f
}
```

```
Augment(f, c, P) {

    b \leftarrow bottleneck(P)

    foreach e \in P {

        if (e \in E) f(e) \leftarrow f(e) + b

        else f(e<sup>R</sup>) \leftarrow f(e<sup>R</sup>) - b

    }

    return f

}
```

Max-Flow Min-Cut Theorem

Augmenting Path Theorem: Flow f is a max flow \Leftrightarrow there are no augmenting paths wrt f

Max-Flow Min-Cut Theorem: The value of the max flow equals the value of the min cut. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] "Maxflow = Mincut"

Proof: We prove both together by showing that all of these are equivalent:

- (i) There is a cut (A, B) such that v(f) = c(A, B).
- (ii) Flow **f** is a max flow.
- (iii) There is no augmenting path w.r.t. *f*.

 $(i) \Rightarrow (ii)$: We already know this by the corollary to weak duality lemma.

Only $(iii) \Rightarrow (i)$ remaining

 $(ii) \Rightarrow (iii): (by contradiction)$ If there is an augmenting path w.r.t. flow **f** then we can improve **f**. Therefore **f** is not a max flow.

$\underline{(iii)} \Rightarrow \underline{(i):}$

Claim: If there is no augmenting path w.r.t. f, there is a cut (A, B) s.t. v(f) = c(A, B).

Proof of Claim: Let *f* be a flow with no augmenting paths.

Let A be the set of vertices reachable from s in residual graph G_f .

- By definition of $A, s \in A$.
- Since no augmenting path (s-t path in G_f), $t \notin A$.

Then $v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$

original network

$\underline{(iii)} \Rightarrow \underline{(i):}$

Claim: If there is no augmenting path w.r.t. f, there is a cut (A, B) s.t. v(f) = c(A, B).

Proof of Claim: Let *f* be a flow with no augmenting paths.

Let A be the set of vertices reachable from s in residual graph G_f .

- By definition of $A, s \in A$.
- Since no augmenting path (s-t path in G_f), $t \notin A$.

Then
$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

= $\sum_{e \text{ out of } A} f(e)$

original network

$\underline{(iii)} \Rightarrow \underline{(i):}$

Claim: If there is no augmenting path w.r.t. f, there is a cut (A, B) s.t. v(f) = c(A, B).

Proof of Claim: Let *f* be a flow with no augmenting paths.

Let A be the set of vertices reachable from s in residual graph G_f .

- By definition of $A, s \in A$.
- Since no augmenting path (s-t path in G_f), $t \notin A$.

"Saturated"

 $W_{32}^{PAUL G. ALLEN SCHOOL}$

$\underline{(iii)} \Rightarrow \underline{(i):}$

Claim: If there is no augmenting path w.r.t. f, there is a cut (A, B) s.t. v(f) = c(A, B).

Proof of Claim: Let *f* be a flow with no augmenting paths.

Let A be the set of vertices reachable from s in residual graph G_f .

- By definition of $A, s \in A$.
- Since no augmenting path (s-t path in G_f), $t \notin A$.

Then
$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e)$$
$$= \sum_{e \text{ out of } A} c(e) = c(A, B)$$

original network

Running Time

- Computing first G_f takes O(n + m) time. (Can ignore disconnected bits so $m \ge n 1$.)
- Finding each augmenting path (graph search in G_f) takes O(m) time.
- Updating f and G_f takes O(n) time.

Total O(m) per iteration.

Assumption: All capacities are integers between 1 and C.

Ford-Fulkerson Invariant: Every flow value f(e) and every residual capacity $c_f(e)$ remains an integer throughout the algorithm. So there is a maximum flow with only integer flows.

Theorem: The Ford-Fulkerson algorithm terminates in \leq Maxflow < nC iterations.

Proof: Capacity of cut with $A = \{s\}$ is $\leq (n - 1)C$. Each augmentation increases flow value by at least 1.

Corollary: If C = 1, Ford-Fulkerson runs in O(mn) time.

Bipartite Matching

A graph G = (V, E) is bipartite iff

- Set **V** of vertices has two disjoint parts **X** and **Y**
- Every edge in *E* joins a vertex from *X* and a vertex from *Y*

Set $M \subseteq E$ is a matching in G iff no two edges in M share a vertex

Goal: Find a matching *M* in *G* of maximum size.

Differences from stable matching

- limited set of possible partners for each vertex
- sides may not be the same size
- no notion of stability; matching everything may be impossible.

Bipartite Matching

- Models assignment problems
 - X represents customers, Y represents salespeople
 - X represents professors, Y represents courses
- If |X| = |Y| = n
 - G has perfect matching iff maximum matching has size n

Bipartite Matching

Input: Bipartite graph

Goal: Find maximum size matching.

Input: Bipartite graph

Add new source **s** pointing to left set, new sink **t** pointed to by right set. Direct all edges from left to right with capacity 1. Compute MaxFlow.

Add new source **s** pointing to left set, new sink **t** pointed to by right set. Direct all edges from left to right with capacity 1. Compute MaxFlow.

Bipartite Matching

Input: Bipartite graph

Goal: Find maximum size matching.

Optimality

Add new source **s** pointing to left set, new sink **t** pointed to by right set. Direct all edges from left to right with capacity 1. Compute MaxFlow.

Ford-Fulkerson Efficiency

Worst case runtime O(mnC) with integer capacities $\leq C$.

- O(m) time per iteration.
- At most *nC* iterations.
- This is "pseudo-polynomial" running time.
- May take exponential time, even with integer capacities:

Choosing Good Augmenting Paths

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

- Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.
- If capacities are irrational, algorithm not guaranteed to terminate!

Goal: Choose augmenting paths so that:

- Can find augmenting paths efficiently.
- Few iterations.
- Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
 - Max bottleneck capacity.
 - Sufficiently large bottleneck capacity.
 - Fewest number of edges.

Capacity Scaling

General idea:

- Choose augmenting paths **P** with 'large' capacity.
- Can augment flows along a path P by any amount < bottleneck(P)
 - Ford-Fulkerson still works
- Get a flow that is maximum for the high-order bits first and then add more bits later

Capacity Scaling

Solve flow problem with capacities with just the high-order bit:

Solve flow problem with capacities with just the high-order bit:

- Each edge has "capacity" ≤ 1 (equivalent to 4 here)
- Time *0*(*mn*)

Solve flow problem with capacities with the **2** high-order bits:

 Capacity of old min cut goes up by < 1 per edge (equivalent to 2 here) for a total residual capacity < m.

Solve flow problem with capacities with the **2** high-order bits:

- Capacity of old min cut goes up by < 1 per edge (equivalent to 2 here) for a total residual capacity < m.
- Time $O(m^2)$ for $\leq m$ iterations.

Capacity Scaling Bits 1 and 2

Solve flow problem with capacities with all 3 bits:

Capacity of old min cut goes up by ≤ 1 per edge for a total residual capacity ≤ m.

Solve flow problem with capacities with all 3 bits:

- Capacity of old min cut goes up by ≤ 1 per edge for a total residual capacity ≤ m.
- Time $O(m^2)$ for $\leq m$ iterations.

Capacity Scaling All Bits

Capacity Scaling All Bits

Flow is a MaxFlow

Total time for capacity scaling

- Number of rounds = $[log_2 C]$ where C is the largest capacity
- Time per round $O(m^2)$
 - At most *m* augmentations per round
 - O(m) time per augmentation

Total time $O(m^2 \log C)$