CSE 421 Introduction to Algorithms

Lecture 15: Network Flow

Announcements

Midterm Reminder:

- Date:
- Next Wednesday, November 8, 6:00-7:30 pm in this room
- Exam designed for a regular class time-slot but this includes extra time to finish.
- Coverage:
- Up to the end of last Thursday's section on Dynamic Programming
- Sample midterm for practice problems and length coming soon.
- Will include "summary sheet" available to you on the midterm.
- This week's section will focus on review problems.
- Zoom review session for Q\&A on Tuesday Nov 7 at 4:30 pm.

Maximum Flow and Minimum Cut

Max flow and min cut:

- Two very rich algorithmic problems.
- Cornerstone problems in combinatorial optimization.
- Beautiful mathematical duality.

Nontrivial applications / reductions:

- Data mining.
- Project selection.
- Airline scheduling.
- Bipartite matching.
- Baseball elimination.
- Image segmentation.
- Network connectivity.
- Strip mining.
- Network reliability.
- Distributed computing.
- Egalitarian stable matching.
- Security of statistical data.
- Network intrusion detection.
- Multi-camera scene reconstruction.
- many many more ...

Origins of Max Flow and Min Cut Problems

Max Flow problem formulation:

- [Tolstoy 1930] Rail transportation planning for the Soviet Union

Min Cut problem formulation:

- Cold War: US military planners want to find a way to cripple Soviet supply routes
- [Harris 1954] Secret RAND corp report for US Air Force
[Ford-Fulkerson 1955] Problems are equivalent

Soviet Rail Network 1955

Reference: On the history of the transportation and maximum flow problems. Alexander Schrijver in Math Programming, 91: 3, 2002.

Flow Network

Flow network:

- Abstraction for material flowing through the edges.
- $G=(V, E)$ directed graph, no parallel edges.
- Two distinguished nodes: $s=$ source, $t=$ sink.
- $c(e)=$ capacity of edge $e \geq 0$.

Cuts

Defn: An s - t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.
The capacity of cut (A, B) is

$$
c(A, B)=\sum_{e \text { out of } A} c(e)
$$

Cuts

Defn: An s - t cut is a partition (A, B) of V with $s \in A$ and $t \in B$. The capacity of cut (A, B) is

$$
c(A, B)=\sum_{e \text { out of } A} c(e)
$$

Minimum Cut Problem

Minimum s-t cut problem:

Given: a flow network
Find: an s - t cut of minimum capacity

Flows

Defn: An \boldsymbol{s} - \boldsymbol{t} flow in a flow network is a function $\boldsymbol{f}: \boldsymbol{E} \rightarrow \mathbb{R}$ that satisfies:

- For each $e \in E: 0 \leq f(e) \leq c(e)$
[capacity constraints]
- For each $v \in V-\{s, t\}: \sum_{e \text { into } v} f(e)=\sum_{e \text { out of } v} f(e) \quad$ [flow conservation]

Defn: The value of flow \boldsymbol{f},

$$
v(f)=\sum_{e \text { out of } s} f(e)
$$

$$
\text { value }=4
$$

Flows

Defn: An \boldsymbol{s} - \boldsymbol{t} flow in a flow network is a function $\boldsymbol{f}: \boldsymbol{E} \rightarrow \mathbb{R}$ that satisfies:

- For each $e \in E: 0 \leq f(e) \leq c(e)$
[capacity constraints]
- For each $v \in V-\{s, t\}: \sum_{e \text { into } v} f(e)=\sum_{e \text { out of } v} f(e) \quad$ [flow conservation]

Defn: The value of flow \boldsymbol{f},

$$
v(f)=\sum_{e \text { out of } s} f(e)
$$

Only show non-zero values of f

$$
\text { value }=4
$$

Flows

Defn: An \boldsymbol{s} - \boldsymbol{t} flow in a flow network is a function $\boldsymbol{f}: \boldsymbol{E} \rightarrow \mathbb{R}$ that satisfies:

- For each $e \in E: 0 \leq f(e) \leq c(e)$
[capacity constraints]
- For each $v \in V-\{s, t\}: \sum_{e \text { into } v} f(e)=\sum_{e \text { out of } v} f(e) \quad$ [flow conservation]

Defn: The value of flow \boldsymbol{f},

$$
v(f)=\sum_{e \text { out of } s} f(e)
$$

Only show non-zero values of f

$$
\text { value }=24
$$

Maximum Flow Problem

Given: a flow network
Find: an \boldsymbol{s} - t flow of maximum value

Maximum Flow Problem

Flow Value Lemma: Let \boldsymbol{f} be any \boldsymbol{s} - \boldsymbol{t} flow and $(\boldsymbol{A}, \boldsymbol{B})$ be any s - \boldsymbol{t} cut. The net value of the flow sent across the cut equals $\mathcal{v}(f)$:

Maximum Flow Problem

Flow Value Lemma: Let \boldsymbol{f} be any \boldsymbol{s} - \boldsymbol{t} flow and $(\boldsymbol{A}, \boldsymbol{B})$ be any s - \boldsymbol{t} cut. The net value of the flow sent across the cut equals $\mathcal{v}(f)$:

Maximum Flow Problem

Flow Value Lemma: Let \boldsymbol{f} be any \boldsymbol{s} - \boldsymbol{t} flow and $(\boldsymbol{A}, \boldsymbol{B})$ be any s - \boldsymbol{t} cut. The net value of the flow sent across the cut equals $v(f)$:

$$
\sum_{e \text { out of } A} f(e)-\sum_{e \text { into } A} f(e)=v(f)
$$

Why is it true?

- Add vertices to s side one by one.
- By flow conservation, net value doesn't change

Maximum Flow Problem

Flow Value Lemma: Let f be any s - \boldsymbol{t} flow and $(\boldsymbol{A}, \boldsymbol{B})$ be any s - \boldsymbol{t} cut. The net value of the flow sent across the cut equals $v(f)$:

$$
\sum_{e \text { out of } A} f(e)-\sum_{e \text { into } A} f(e)=v(f)
$$

Proof

$$
\begin{aligned}
v(f) & =\sum_{e \text { out of } s} f(e) \quad=0 \text {. No edges into } s \text { since it is a source } \\
& =\sum_{e \text { out of } s} f(e)-\sum_{e \text { into } s} f(e)+\sum_{v \in A-\{s\}}\left[\sum_{\text {e out of } v} f(e)-\sum_{e \text { into } v} f(e)\right] \\
& =\sum_{e \text { out of } A} f(e)-\sum_{e \text { into } A} f(e)
\end{aligned}
$$

Contributions from internal edges of \boldsymbol{A} cancel.

Flows and Cuts

Weak Duality: Let f be any s - t flow and (A, B) be any s - t cut. The value of the flow is at most the capacity of the cut; i.e., $v(f) \leq c(A, B)$:

Value of flow $=24=28-4$

Capacity of cut $=28$

Flows and Cuts

Weak Duality: Let f be any s - \boldsymbol{t} flow and (A, B) be any s - \boldsymbol{t} cut. The value of the flow is at most the capacity of the cut; i.e., $v(f) \leq c(A, B)$.

Proof:

$$
\begin{array}{rlrl}
v(f) & =\sum_{e \text { out of } A} f(e)-\sum_{e \text { into } A} f(e) \\
& \leq \sum_{e \text { out of } A} f(e) & \text { since } f(e) \geq 0 \\
& \leq \sum_{e \text { out of } A} c(e) & \text { since } f(e) \leq c(e) \\
& =c(A, B) &
\end{array}
$$

Certificate of Optimality

Corollary: Let f be any s - \boldsymbol{t} flow and (A, B) be any s - \boldsymbol{t} cut. If $v(f)=\boldsymbol{c}(\boldsymbol{A}, \boldsymbol{B})$ then \boldsymbol{f} is a max flow and $(\boldsymbol{A}, \boldsymbol{B})$ is a min cut.

Value of flow $=28$

Capacity of cut $=28$

Both are optimal!

Towards a Max Flow Algorithm

What about the following greedy algorithm?

- Start with $f(e)=0$ for all edges $e \in E$.
- While there is an s - t path P where each edge has $f(e)<c(e)$.
- "Augment" flow along P; that is:
- Let $\alpha=\min _{e \in P}(c(e)-f(\boldsymbol{e}))$
- Add α to flow on every edge e along path P. (Adds α to $v(f)$.)

Towards a Max Flow Algorithm

What about the following greedy algorithm?

- Start with $f(e)=0$ for all edges $e \in E$.
- While there is an s - t path P where each edge has $f(e)<c(e)$.
- "Augment" flow along P; that is:
- Let $\alpha=\min _{e \in P}(c(e)-f(e))$
- Add α to flow on every edge e along path P. (Adds α to $v(f)$.)

Can get stuck...

Another Stuck Example

On every s - \boldsymbol{t} path there is some edge with $f(e)=c(e)$:

Value of flow $=24=28-4$

Capacity of cut $=28$

Flows and cuts so far

Let f be any s - t flow and (A, B) be any s - \boldsymbol{t} cut:

Flow Value Lemma: The net value of the flow sent across (A, B) equals $v(f)$.
Weak Duality: The value of the flow is at most the capacity of the cut;

$$
\text { i.e., } v(f) \leq c(A, B)
$$

Corollary: If $v(f)=c(A, B)$ then f is a maximum flow and (A, B) is a minimum cut.
Augmenting along paths using a greedy algorithm can get stuck.
Next idea: Ford-Fulkerson Algorithm, which applies greedy ideas to a "residual graph" that lets us reverse prior flow decisions from the basic greedy approach to get optimal results!

Greed Revisited: Residual Graph \& Augmenting Paths

The only way we could route more flow from \mathbf{s} to \mathbf{t} would be to reduce the flow from \mathbf{u} to \mathbf{v} to make room for that amount of extra flow from \mathbf{s} to \mathbf{v}.
But to conserve flow we also would need to increase the flow from \mathbf{u} to \mathbf{t} by that same amount.

Suppose that we took this flow \boldsymbol{f} as a baseline, what changes could each edge handle?

- We could add up to 10 units along sv or ut or uv
- We could reduce by up to 20 units from su or uv or vt This gives us a residual graph \boldsymbol{G}_{f} of possible changes
 where we draw reducing as "sending back".

Greed Revisited: Residual Graph \& Augmenting Paths

Greed Revisited: Residual Graph \& Augmenting Paths

No path can even leave \boldsymbol{s} !

