CSE 421 Introduction to Algorithms

Lecture 15: Network Flow

Announcements

Midterm Reminder:

- Date:
 - Next Wednesday, November 8, 6:00 7:30 pm in this room
 - Exam designed for a regular class time-slot but this includes extra time to finish.
- Coverage:
 - Up to the end of last Thursday's section on Dynamic Programming
- Sample midterm for practice problems and length coming soon.
 - Will include "summary sheet" available to you on the midterm.
- . This week's section will focus on review problems (not necessarily exam realy)
- Zoom review session for Q&A on Tuesday Nov 7 at 4:30 pm.

Maximum Flow and Minimum Cut

Max flow and min cut:

- Two very rich algorithmic problems.
- Cornerstone problems in combinatorial optimization.
- Beautiful mathematical duality.

Nontrivial applications / reductions:

- · Data mining.
- Project selection.
- Airline scheduling.
- Bipartite matching.
- Baseball elimination. <
- Image segmentation.
- Network connectivity.
- Strip mining.

- Network reliability.
- Distributed computing.
- Egalitarian stable matching.
- Security of statistical data.
- Network intrusion detection.
- Multi-camera scene reconstruction.
- many many more ...

Origins of Max Flow and Min Cut Problems

Max Flow problem formulation:

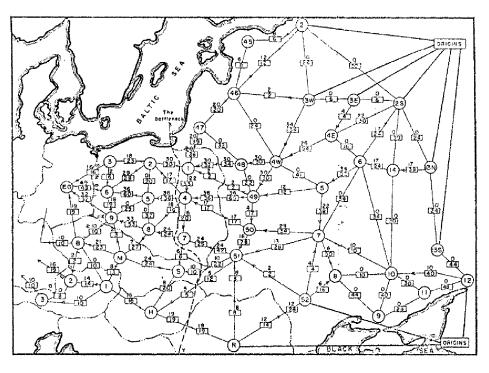
• [Tolstoy 1930] Rail transportation planning for the Soviet Union

Min Cut problem formulation:

- Cold War: US military planners want to find a way to cripple Soviet supply routes
- [Harris 1954] Secret RAND corp report for US Air Force

[Ford-Fulkerson 1955] Problems are equivalent

Soviet Rail Network 1955



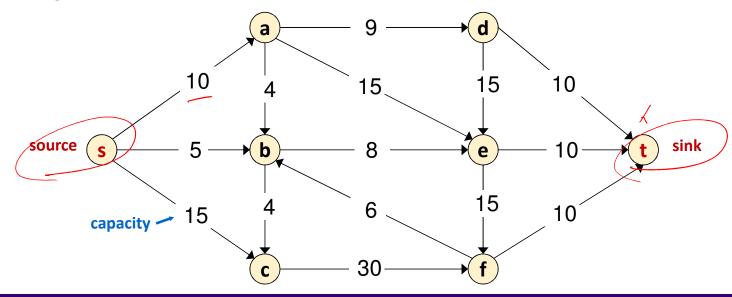
Reference: *On the history of the transportation and maximum flow problems.* Alexander Schrijver in Math Programming, 91: 3, 2002.

Minimum Cut Problem

For Nepurh

Flow network:

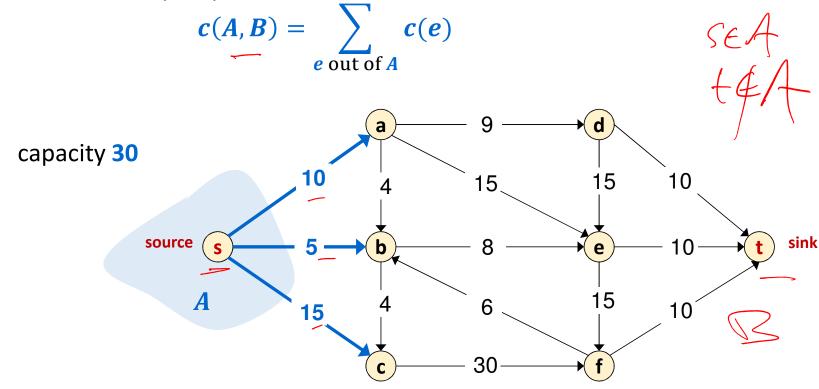
- Abstraction for material *flowing* through the edges.
- G = (V, E) directed graph, no parallel edges.
- Two distinguished nodes: s = source, t = sink.
- c(e) = capacity of edge $e \ge 0$.



Cuts

Defn: An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

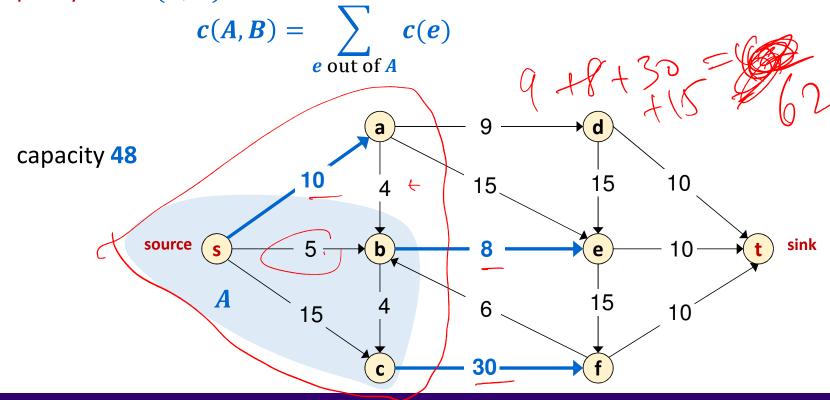
The capacity of cut (A, B) is



Cuts

Defn: An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

The capacity of cut (A, B) is

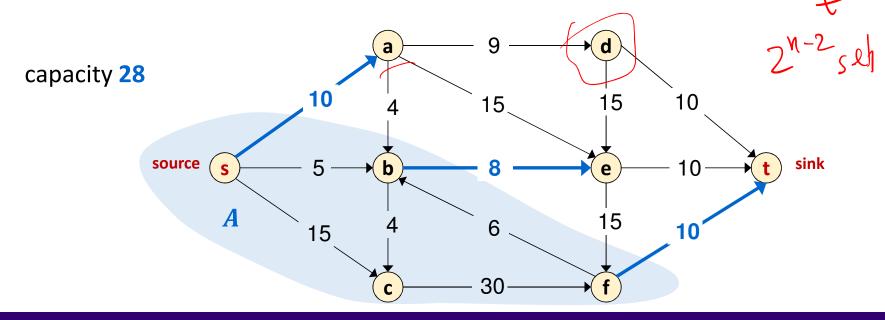


Cuts

Minimum s-t cut problem:

Given: a flow network

Find: an s-t cut of minimum capacity



Flows

Defn: An s-t flow in a flow network is a function $f: E \to \mathbb{R}$ that satisfies:

• For each $e \in E$: $0 \le f(e) \le c(e)$

[capacity constraints]

• For each $v \in V - \{s, t\}$: $\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v}$

$$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

[flow conservation]

Defn: The value of flow f,

$$v(f) = \sum_{e \text{ out of } s} f(e)$$

4/10 4/4 0/15 0/15 0/10

value = 4

0/15 0/4 0/6 0/15 0/10

Flows

Defn: An s-t flow in a flow network is a function $f: E \to \mathbb{R}$ that satisfies:

• For each $e \in E$: $0 \le f(e) \le c(e)$

[capacity constraints]

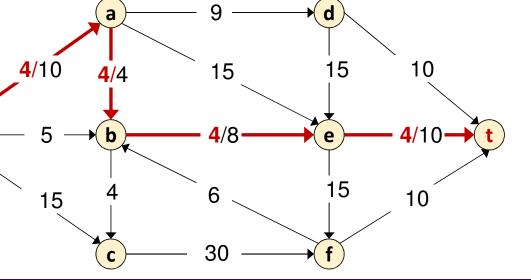
• For each
$$v \in V - \{s, t\}$$
:
$$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

[flow conservation]

Defn: The value of flow f,

$$v(f) = \sum_{e \text{ out of } s} f(e)$$

Only show non-zero values of **f**



Flows

Defn: An s-t flow in a flow network is a function $f: E \to \mathbb{R}$ that satisfies:

10/10

• For each $e \in E$: $0 \le f(e) \le c(e)$

[capacity constraints]

• For each
$$v \in V - \{s, t\}$$
:
$$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

[flow conservation]

6/10

15

Defn: The value of flow f,

$$v(f) = \sum_{e \text{ out of } s} f(e)$$

Only show non-zero values of **f**

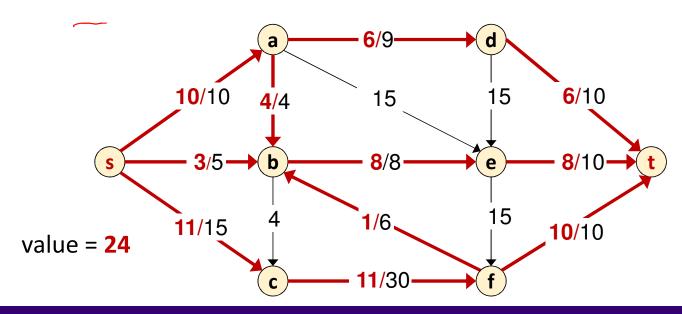
3/5 **→** (b) 8/8 **8**/10· 1/6, **11**/15 **10**/10 value = 24**11/30-**

6/9-

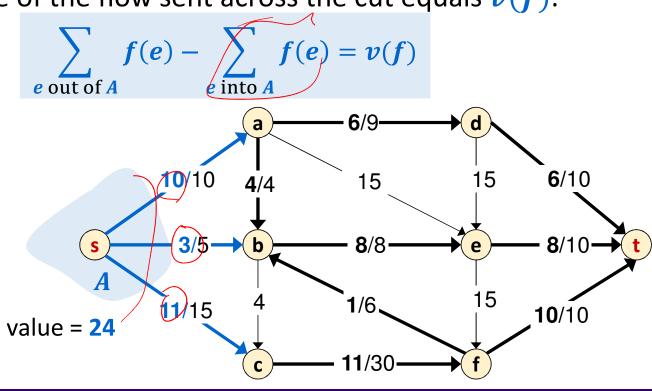
15

Given: a flow network

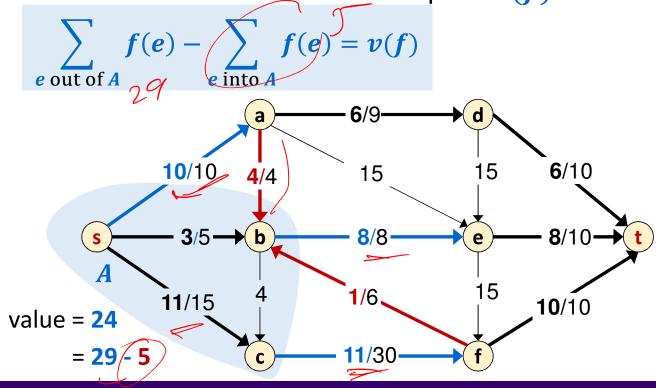
Find: an *s-t* flow of maximum value



Flow Value Lemma: Let f be any s-t flow and (A, B) be any s-t cut. The net value of the flow sent across the cut equals v(f):



Flow Value Lemma: Let f be any s-t flow and (A, B) be any s-t cut. The net value of the flow sent across the cut equals v(f):



Flow Value Lemma: Let f be any s-t flow and (A, B) be any s-t cut. The net value of the flow sent across the cut equals v(f):

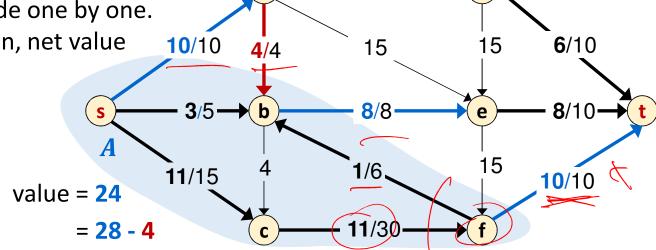
$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e) = v(f)$$

Why is it true?

Add vertices to s side one by one.

By flow conservation, net value

doesn't change



6/9-

Contributions from internal edges of *A* cancel.

Flow Value Lemma: Let f be any s-t flow and (A, B) be any s-t cut. The net value of the flow sent across the cut equals w(f):

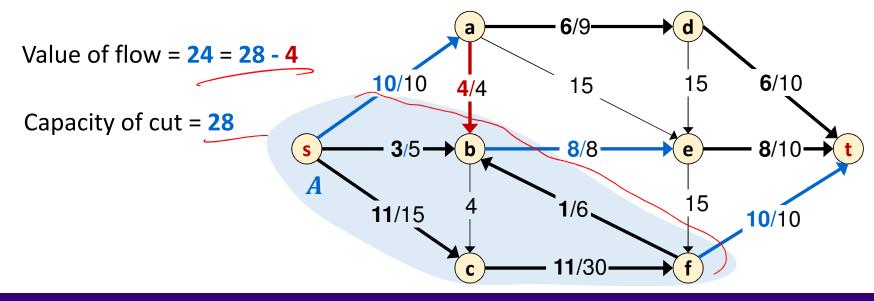
The net value of the flow sent across the cut equals v(f):

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e) = v(f)$$

Proof: $v(f) = \sum_{e \text{ out of } s} f(e)$ = 0. No edges into s since it is a source $= \sum_{e \text{ out of } s} f(e) - \sum_{e \text{ into } s} f(e) + \sum_{v \in A - \{s\}} \sum_{e \text{ out of } v} f(e) - \sum_{e \text{ into } v} f(e)$ = 0 by flow conservation.

Flows and Cuts

Weak Duality: Let f be any s-t flow and (A, B) be any s-t cut. The value of the flow is at most the capacity of the cut; i.e., $v(f) \le c(A, B)$:



Flows and Cuts

Weak Duality: Let f be any s-t flow and (A, B) be any s-t cut. The value of the flow is at most the capacity of the cut; i.e., $v(f) \le c(A, B)$.

Proof:

$$v(f) = \sum_{\substack{e \text{ out of } A}} f(e) - \sum_{\substack{e \text{ into } A}} f(e)$$

$$\leq \sum_{\substack{e \text{ out of } A}} f(e) - \sum_{\substack{e \text{ into } A}} f(e)$$

$$\leq \sum_{\substack{e \text{ out of } A}} c(e) - \sum_{\substack{e \text{ into } A}} f(e)$$

$$\leq \sum_{\substack{e \text{ out of } A}} c(e) - \sum_{\substack{e \text{ into } A}} f(e)$$

$$\leq \sum_{\substack{e \text{ out of } A}} c(e) - \sum_{\substack{e \text{ into } A}} f(e)$$

$$\leq \sum_{\substack{e \text{ out of } A}} c(e) - \sum_{\substack{e \text{ into } A}} f(e)$$

Certificate of Optimality

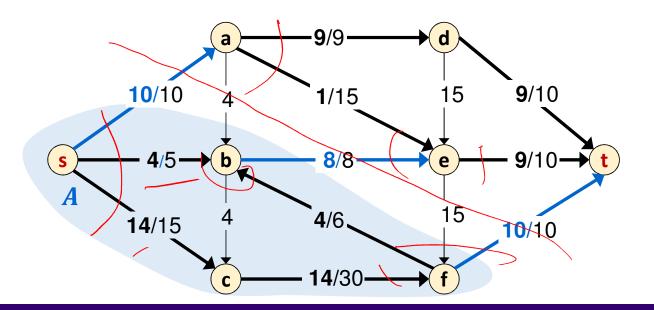
Corollary: Let f be any s-t flow and (A, B) be any s-t cut.

If v(f) = c(A, B) then f is a max flow and (A, B) is a min cut.

Value of flow = 28

Capacity of cut = 28

Both are optimal!



Towards a Max Flow Algorithm

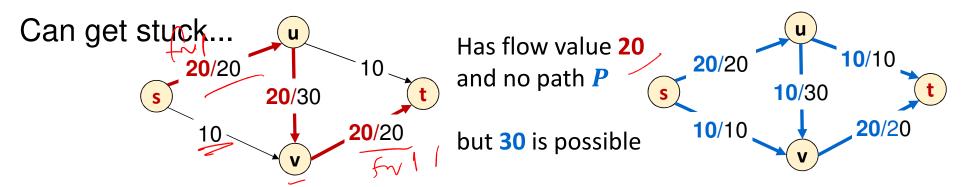
What about the following greedy algorithm?

- Start with f(e) = 0 for all edges $e \in E$.
- While there is an s-t path P where each edge has f(e) < c(e).
 - "Augment" flow along P; that is:
 - Let $\alpha = \min_{e \in P} (c(e) f(e))$
 - Add α to flow on every edge e along path P. (Adds α to v(f).)

Towards a Max Flow Algorithm

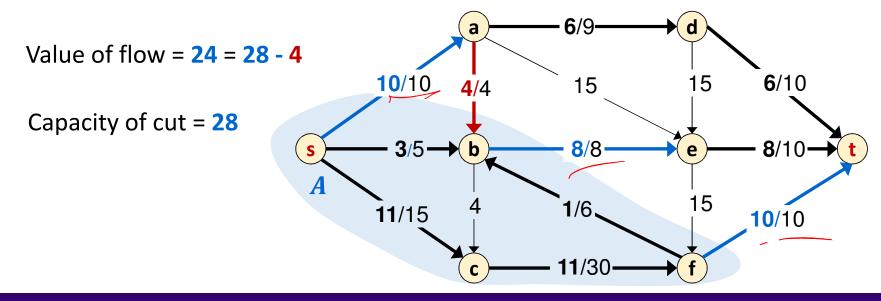
What about the following greedy algorithm?

- Start with f(e) = 0 for all edges $e \in E$.
- While there is an s-t path P where each edge has f(e) < c(e).
 - "Augment" flow along P; that is:
 - Let $\alpha = \min_{e \in P} (c(e) f(e))$
 - Add α to flow on every edge e along path P. (Adds α to v(f).)



Another Stuck Example

On every **s**-**t** path there is some edge with f(e) = c(e):



Flows and cuts so far

Let f be any s-t flow and (A, B) be any s-t cut:

Flow Value Lemma: The net value of the flow sent across (A, B) equals v(f).

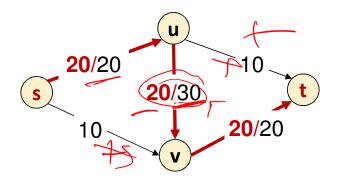
Weak Duality: The value of the flow is at most the capacity of the cut; i.e., $v(f) \le c(A, B)$.

Corollary: If v(f) = c(A, B) then f is a maximum flow and (A, B) is a minimum cut.

Augmenting along paths using a greedy algorithm can get stuck.

Next idea: Ford-Fulkerson Algorithm, which applies greedy ideas to a "residual graph" that lets us reverse prior flow decisions from the basic greedy approach to get optimal results!

Greed Revisited: Residual Graph & Augmenting Paths



The only way we could route more flow from **s** to **t** would be to reduce the flow from **u** to **v** to make room for that amount of extra flow from **s** to **v**.

But to conserve flow we also would need to increase the flow from **u** to **t** by that same amount.

Suppose that we took this flow **f** as a baseline, what changes could each edge handle?

- We could add up to 10 units along sv or ut or uv
- We could reduce by up to 20 units from \mathbf{su} or \mathbf{uv} or \mathbf{vt} This gives us a residual graph G_f of possible changes where we draw reducing as "sending back".

