CSE 421 Introduction to Algorithms

Lecture 14: Dynamic Programming
 Bellman-Ford

Shortest Paths allowing negative-cost edges

Shortest path problem:
Given: a directed graph $G=(\boldsymbol{V}, \boldsymbol{E})$ with edge weights $c_{v w}$ (possibly negative) and vertices $s, t \in V$.
Find: a shortest path in G from s to node t.
Sample Application: Nodes represent agents in a financial setting and $c_{v w}$ is cost of a transaction in which we buy from agent v and sell immediately to w.

Shortest Paths: Failed Attempts

Why not Dijkstra's Algorithm? Can fail if negative edge costs.

Dijkstra begins with $S=\{s\}$ and $d(s)=0$. Next step would add t to s at distance 1, though actual minimum distance from s to t is $\mathbf{- 1}$.

Adding a constant to every edge cost to make them $\geq \mathbf{0}$? Also fails.

Problem: Paths can have different lengths so adding a fixed amount per edge changes relative costs.

Original shortest path is s-v-w-t with cost 3.
After adjustment, shortest path is s-u-t.

Shortest Paths: Negative Cost Cycles

Negative cost cycle:

Observation: (1) If some path from s to t contains a negative cost cycle, there does not exist a shortest s - t path.

The path can go around the cycle W more times and get even lower cost, the limit of path costs is $-\infty$.

Shortest Paths: Negative Cost Cycles

Observation: (1) If some path from s to t contains a negative cost cycle, there does not exist a shortest s - t path.
(2) If the graph G has no negative cycles then a shortest s - t path must have at most $n-1$ edges.

If not, there would be a repeated vertex which would create a cycle that could be removed without decreasing the cost.

Shortest Paths: Dynamic Programming

Defn: OPT $(i, v)=$ length of shortest v - t path P using at most i edges.
Case 1: P uses at most $i-1$ edges.

- In this case $\operatorname{OPT}(i, v)=\operatorname{OPT}(i-1, v)$

Case 2: P uses exactly i edges.

- if (v, w) is first edge, then OPT uses (v, w), and then selects the best v - \boldsymbol{t} path using at most $\boldsymbol{i} \mathbf{- 1}$ edges

$$
\operatorname{OPT}(i, v)=\left\{\begin{array}{lc}
0 & \text { if } i=0 \\
\min \left(\operatorname{OPT}(i-1, v), \min _{(v, w) \in E} c_{v w}+\operatorname{OPT}(i-1, w)\right. & \text { otherwise }
\end{array}\right.
$$

By observation: if no negative cost cycles, OPT $(n-1, v)=$ length of shortest v - \boldsymbol{t} path.

Shortest Paths: Implementation

```
```

Shortest-Path(G, t) {

```
```

Shortest-Path(G, t) {
foreach node v \in V
foreach node v \in V
OPT[0, v] \leftarrow\infty
OPT[0, v] \leftarrow\infty
OPT[0, t] \leftarrow0
OPT[0, t] \leftarrow0
for i = 1 to n-1
for i = 1 to n-1
foreach node v \in V
foreach node v \in V
OPT[i, v] \leftarrow OPT[i-1, v]
OPT[i, v] \leftarrow OPT[i-1, v]
foreach edge (v,w) \in E
foreach edge (v,w) \in E
OPT[i, v] \leftarrow min { OPT[i, v], ccuw + OPT[i-1, w] }
OPT[i, v] \leftarrow min { OPT[i, v], ccuw + OPT[i-1, w] }
}
}
} OPT[i, v] \leftarrow min { OPT[i, v], ccww + OPT[i-1, w] }

```
} OPT[i, v] \leftarrow min { OPT[i, v], ccww + OPT[i-1, w] }
```

```
    O
```

```
    O
```

$\boldsymbol{n}-1$ iterations of outer loop
Two inner loops together touch each directed edge once

Total: $O(n m)$ time
$O\left(n^{2}\right)$ space
To find the shortest paths, maintain a "successor" pointer for each vertex that gives the next vertex on the current shortest path to t.

Shortest Paths: Practical Improvements

Practical improvements:

- Maintain only one array OPT $[v]=$ shortest v - t path that we have found so far.
- No need to check edges of the form (v, w) unless OPT[w] changed in previous iteration.

Theorem: Throughout the algorithm, OPT $[v]$ is length of some v - t path, and after i rounds of updates, the value OPT[$v]$ is no larger than the length of shortest v - t path using at most i edges.

Overall impact.
Space: $\boldsymbol{O}(\boldsymbol{m}+n)$.
Running time: Still O ($\mathbf{m n}$) worst case, but substantially faster in practice.

Bellman-Ford: Efficient Implementation

```
Push-Based-Shortest-Path(G, s, t) {
    foreach node v E V {
        OPT[v] \leftarrow 
        successor[v] }\leftarrow
        }
        OPT[t] = 0; oldupdated }\leftarrow{t
        for i = 1 to n-1 {
        updated }\leftarrow
        foreach node w \in V {
        if (w is in oldupdated) {
            foreach node v such that (v, w) \in E {
                    if (OPT[v] > c cww + OPT[w]) {
                        OPT[v] }\leftarrow\mp@subsup{\textrm{c}}{\textrm{vw}}{}+\textrm{OPT}[w
                        successor[v] }\leftarrow\textrm{w
                                updated }\leftarrow\mathrm{ updated U{v}
                    }
            }
        }
        if updated = \phi, stop.
        else oldupdated }\leftarrow\mathrm{ updated
    }
}
```


Bellman-Ford

Shortest paths with negative costs on a DAG

Edges only go from lower to higher-numbered vertices

- Update distances in reverse order of topological sort
- Only one pass through vertices required
- $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time

Distance Vector Protocol

Bellman-Ford Application: Distance Vector Protocol

Application domain: Communication networks

- Node \approx router
- Edge \approx direct communication link
- Cost of edge \approx delay on link.

Edge costs are non-negative, why not use Dijkstra's algorithm?

- Dijkstra's algorithm requires global information in the network

Advantages of Bellman-Ford approach:

- It only uses only local knowledge of neighboring nodes.
- No need for synchronization: We don't expect routers to run in lockstep. The order in which each foreach loop executes in not important. Moreover, the Bellman-Ford algorithm still converges even if updates are asynchronous!

Distance Vector Protocol

Distance vector protocol:

- Each router maintains a vector of shortest path lengths to every other node (distances) and the first hop on each path (directions).
- Algorithm: each router performs \boldsymbol{n} separate computations, one for each potential destination node.
- "Routing by rumor."

Examples: RIP, Xerox XNS RIP, Novell's IPX RIP, Cisco's IGRP, DEC's DNA Phase IV, AppleTalk's RTMP.

Caveat: Edge costs may change during algorithm (or fail completely).

Path Vector Protocols

Link state routing:

- Each router also stores the entire path.
- Based on Dijkstra's algorithm.
- Avoids "counting-to-infinity" problem and related difficulties.
- Requires significantly more storage.

Examples: Border Gateway Protocol (BGP), Open Shortest Path First (OSPF).

Negative Cycles in a Graph

Detecting Negative Cycles

Lemma: If every vertex in G can reach t and $\operatorname{OPT}(n, v)=\operatorname{OPT}(n-1, v)$ for all v, then G has no negative cycles.

Proof: This would be a fixed point of recurrence that computes OPT (i, v) correctly for every i. Vertices on negative cycles that can reach t couldn't possibly have a fixed point.

Lemma: If $\operatorname{OPT}(n, v)<\operatorname{OPT}(n-1, v)$ for some v, then shortest path from v to t with length $\leq n$ contains a cycle W. Moreover W has negative cost.

Proof: (By contradiction)
Since $\operatorname{OPT}(n, v)<\operatorname{OPT}(n-1, v)$, paths P with cost $\operatorname{OPT}(n, v)$ have exactly n edges.
By pigeonhole principle, such a P must contain a directed cycle W.
Deleting W yields a v - t path with $<n$ edges $\Rightarrow W$ has negative cost.

Detecting Negative Cycles

Theorem: Can detect negative cost cycles in O (mn) time.
Algorithm: Add new node t and connect all nodes to t with 0 -cost edge.
Check if $\operatorname{OPT}(n, v)=\operatorname{OPT}(n-1, v)$ for all vertices v

- if yes, then no negative cycles
- if no, then extract cycle from shortest path from v to t

Detecting Negative Cycles: Application

Currency conversion: Given n currencies and exchange rates between pairs of currencies, is there an arbitrage opportunity?

Remark: High speed trading makes fastest algorithm very valuable!

Detecting Negative Cycles: Summary

Run Bellman-Ford on graph with

- extra node t.
- early stopping for up to n iterations (instead of $n-1$).
- successor variables

Fact: upon termination, successor variables trace a negative cycle if one exists...

Bellman-Ford for Negative Cycles

