Shortest Paths allowing negative-cost edges

Shortest path problem:
Given: a directed graph $G = (V, E)$ with edge weights c_{vw} (possibly negative) and vertices $s, t \in V$.
Find: a shortest path in G from s to node t.

Sample Application: Nodes represent agents in a financial setting and c_{vw} is cost of a transaction in which we buy from agent v and sell immediately to w.
Shortest Paths: Failed Attempts

Why not Dijkstra’s Algorithm? Can fail if negative edge costs.

Dijkstra begins with $S = \{s\}$ and $d(s) = 0$. Next step would add t to s at distance 1, though actual minimum distance from s to t is -1.

Adding a constant to every edge cost to make them ≥ 0? Also fails.

Problem: Paths can have different lengths so adding a fixed amount per edge changes relative costs.

Original shortest path is s-v-w-t with cost 3.

After adjustment, shortest path is s-u-t.
Shortest Paths: Negative Cost Cycles

Negative cost cycle:

Observation: (1) If some path from \(s \) to \(t \) contains a negative cost cycle, there does not exist a shortest \(s-t \) path.

The path can go around the cycle \(W \) more times and get even lower cost, the limit of path costs is \(-\infty \).
Shortest Paths: Negative Cost Cycles

Observation: (1) If some path from \(s \) to \(t \) contains a negative cost cycle, there does not exist a shortest \(s-t \) path.

(2) If the graph \(G \) has no negative cycles then a shortest \(s-t \) path must have at most \(n - 1 \) edges.

If not, there would be a repeated vertex which would create a cycle that could be removed without decreasing the cost.

\[c(W) \geq 0 \]
Shortest Paths: Dynamic Programming

Defn: $\text{OPT}(i, v) = \text{length of shortest } v \rightarrow t \text{ path } P \text{ using at most } i \text{ edges.}$

Case 1: P uses at most $i - 1$ edges.

• In this case $\text{OPT}(i, v) = \text{OPT}(i - 1, v)$

Case 2: P uses exactly i edges.

• if (v, w) is first edge, then OPT uses (v, w), and then selects the best $v \rightarrow t$ path using at most $i - 1$ edges

$$\text{OPT}(i, v) = \begin{cases}
0 & \text{if } i = 0 \\
\min(\text{OPT}(i - 1, v), \min_{(v, w) \in E} c_{vw} + \text{OPT}(i - 1, w)) & \text{otherwise}
\end{cases}$$

By observation: if no negative cost cycles, $\text{OPT}(n - 1, v) = \text{length of shortest } v \rightarrow t \text{ path.}$
Shortest Paths: Implementation

Shortest-Path(G, t) {
 foreach node v ∈ V
 OPT[0, v] ← ∞
 OPT[0, t] ← 0

 for i = 1 to n-1
 foreach node v ∈ V
 OPT[i, v] ← OPT[i-1, v]
 foreach edge (v, w) ∈ E
 OPT[i, v] ← min { OPT[i, v], cvw + OPT[i-1, w] }
}

To find the shortest paths, maintain a “successor” pointer for each vertex that gives the next vertex on the current shortest path to t.

n − 1 iterations of outer loop
Two inner loops together touch each directed edge once

Total: $O(nm)$ time
$O(n^2)$ space
Shortest Paths: Practical Improvements

Practical improvements:

• Maintain only one array $\text{OPT}[v] = \text{shortest } v-t \text{ path that we have found so far.}$
• No need to check edges of the form (v, w) unless $\text{OPT}[w]$ changed in previous iteration.

Theorem: Throughout the algorithm, $\text{OPT}[v]$ is length of some $v-t$ path, and after i rounds of updates, the value $\text{OPT}[v]$ is no larger than the length of shortest $v-t$ path using at most i edges.

Overall impact.

Space: $O(m + n)$.

Running time: Still $O(mn)$ worst case, but substantially faster in practice.
Bellman-Ford: Efficient Implementation

Push-Based-Shortest-Path(G, s, t) {
 foreach node v ∈ V {
 OPT[v] ← ∞
 successor[v] ← φ
 }
 OPT[t] = 0; oldupdated ← {t}
 for i = 1 to n-1 {
 updated ← φ
 foreach node w ∈ V {
 if (w is in oldupdated) {
 foreach node v such that (v, w) ∈ E {
 if (OPT[v] > c_{vw} + OPT[w]) {
 OPT[v] ← c_{vw} + OPT[w]
 successor[v] ← w
 updated ← updated U {v}
 }
 }
 }
 }
 if updated = φ, stop.
 else oldupdated ← updated
 }
}
Bellman-Ford
Bellman-Ford
Bellman-Ford
Bellman-Ford
Bellman-Ford
Bellman-Ford
Bellman-Ford
Shortest paths with negative costs on a DAG

Edges only go from lower to higher-numbered vertices

- Update distances in reverse order of topological sort
- Only one pass through vertices required
- $O(n + m)$ time
Distance Vector Protocol
Bellman-Ford Application: Distance Vector Protocol

Application domain: Communication networks
- Node ≈ router
- Edge ≈ direct communication link
- Cost of edge ≈ delay on link.

Edge costs are non-negative, why not use Dijkstra's algorithm?
- Dijkstra’s algorithm requires global information in the network

Advantages of Bellman-Ford approach:
- It only uses only local knowledge of neighboring nodes.
- No need for synchronization: We don't expect routers to run in lockstep. The order in which each `foreach` loop executes is not important. Moreover, the Bellman-Ford algorithm still converges even if updates are asynchronous!
Distance Vector Protocol

Distance vector protocol:

- Each router maintains a vector of shortest path lengths to every other node (distances) and the first hop on each path (directions).
- **Algorithm:** each router performs n separate computations, one for each potential destination node.
- “Routing by rumor.”

Examples: RIP, Xerox XNS RIP, Novell's IPX RIP, Cisco's IGRP, DEC's DNA Phase IV, AppleTalk’s RTMP.

Caveat: Edge costs may *change* during algorithm (or fail completely).

![Diagram](image)
Path Vector Protocols

Link state routing:

- Each router also stores the entire path.
- Based on Dijkstra's algorithm.
- Avoids "counting-to-infinity" problem and related difficulties.
- Requires significantly more storage.

Examples: Border Gateway Protocol (BGP), Open Shortest Path First (OSPF).
Negative Cycles in a Graph
Detecting Negative Cycles

Lemma: If every vertex in G can reach t and $\text{OPT}(n, v) = \text{OPT}(n - 1, v)$ for all v, then G has no negative cycles.

Proof: This would be a fixed point of recurrence that computes $\text{OPT}(i, v)$ correctly for every i. Vertices on negative cycles that can reach t couldn’t possibly have a fixed point. ■

Lemma: If $\text{OPT}(n, v) < \text{OPT}(n - 1, v)$ for some v, then shortest path from v to t with length $\leq n$ contains a cycle W. Moreover W has negative cost.

Proof: (By contradiction)

Since $\text{OPT}(n, v) < \text{OPT}(n - 1, v)$, paths P with cost $\text{OPT}(n, v)$ have exactly n edges.

By pigeonhole principle, such a P must contain a directed cycle W.

Deleting W yields a v-t path with $< n$ edges $\Rightarrow W$ has negative cost.
Detecting Negative Cycles

Theorem: Can detect negative cost cycles in $O(mn)$ time.

Algorithm: Add new node t and connect all nodes to t with 0-cost edge.

Check if $\text{OPT}(n, v) = \text{OPT}(n - 1, v)$ for all vertices v

- if yes, then no negative cycles
- if no, then extract cycle from shortest path from v to t
Detecting Negative Cycles: Application

Currency conversion: Given n currencies and exchange rates between pairs of currencies, is there an arbitrage opportunity?

Remark: High speed trading makes fastest algorithm very valuable!
Detecting Negative Cycles: Summary

Run Bellman-Ford on graph with

• extra node t.
• early stopping for up to n iterations (instead of $n - 1$).
• successor variables

Fact: upon termination, successor variables trace a negative cycle if one exists...
Bellman-Ford for Negative Cycles
Bellman-Ford for Negative Cycles