CSE 421
Introduction to Algorithms

Lecture 13: Dynamic Programming
RNA folding, Sequence Alighment

Dynamic Programming for Optimization
1. Formulate the (optimum) value as a recurrence relation or recursive algorithm

2. Figure out the possible values of parameters in the recursive calls.
e This should be “small”, i.e., bounded by a low-degree polynomial
e Can use memoization to store a cache of previously computing values

3. Specify an order of evaluation for the recurrence so that you already have the
partial results stored in memory when you need them.

* Produces iterative code
» Store extra information to be able to reconstruct optimal solution and add
reconstruction code

Once you have an iterative DP solution: see if you can save space.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Dynamic Programming Patterns so far

Fibonacci pattern: Knapsack pattern:
* 1-D, O(1) immediately prior * 2-D, O(1) elements in previous row, above
« 0(1) space and arbitrary far to the left
m O(n) « 0(nW) space
L1 1 [[[["[*"["]
Weighted interval scheduling pattern:
* 1-D, O(1) arbitrary prior
O(n
* O(n) space () O(mW)
L1 1 [« [[[[*]"']
Longest increasing subsequence pattern: *\¥ 1
* 1-D, allm — 1 prior
0(n?%)

* 0(n) space * O(W) space if only optimum value needed

m * Maintain current and previous rows
BAEAEARARARARERARA

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Dynamic Programming over Intervals

In this different class of problems from ones we have seen before, there are
e 1-dimensional inputs
* A notion of optimization over intervals in that 1 dimension

A number of important problems fit this paradigm
* We focus on a version of one these: RNA Secondary Structure

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

RNA Secondary Structure

RNA (ribonucleic acid): String B = by b, -+ b,, of bases over alphabet
{A, C, 6, U} standing for adenine, cytosine, guanine, and uracil.

RNA Secondary Structure: RNA is single-stranded and tends to loop back and form bonds between
pairs of its bases “base-pairs”. This structure is essential for understanding behavior of the molecule.

/ N\
A A
AN /7
A-—U 6—cC
Ex: GUC6AUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA (I: o é G U— A— A/ \G
/ 1 1 1 |
G | 1 |
V) A—U—uU A
PR | | ~g—
A C—6G6—C—UVU B
| o _
Cc 6—C—G—A—G--C
N 7 | |
G
complementary base pairs: A-U, C-6 A-- ‘i’
G

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

RNA Secondary Structure

Defn: A secondary structure for an RNA sequence B = b b; -+ b, is a set of pairs S = { (b;, b;) } that satisfy:

* [Watson-Crick condition] S is a matching and each pair in S is a Watson-Crick complement:
A-U,U-A, C-6,0r 6-C.
* [No sharp bends] The ends of each pair are separated by at least 4 intervening bases.
That s, if (b;, b;) € S, theni < j — 4.
* [Non-crossing] If (b;, b;) and (by, b,) are two pairs in S, then we cannot have i < k < j <.

Optimizing energy: The usual hypothesis is that an RNA molecule will form a secondary structure that
optimizes the total free energy. Maximizing the # of base pairs in S roughly maximizes free energy.

Given: an RNA molecule B = b{b, -+ b,,,

Find: a secondary structure S for B maximizing the number of base pairsin §.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

RNA Secondary Structure: Examples

Examples.]
6—6G 6—6G
/ N\ e/ \G / AN
c v \ / c v
N\ /7 AN /
cC---6 C---6 c v
I I I I | >< |
A---U A---U A G
I I l I I I
U---A Uu---A Uu---A
base pair
AUGUGGCCA AUV AUGGGG CAU AGUUGGCTCA AUV
ok sharp bend crossing

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

RNA Secondary Structure: False Start

As usual we consider two cases based on the status of the last base in an optimal secondary
structure

First attempt: Define OPT(j) = maximum # of base pairs in a secondary structure
of the substring b1 b, --- b;.

Case 1: OPT does not match base b;. Value is OPT(j — 1).

match by and b;
Case 2: OPT contains some base pair (by, b;).

Two independent* subproblems: J
* Oneon byb; -+ bj,_4 with value OPT(k — 1) @

@)
@)
@)
@)

@)
@)
@)

* Oneon bk+1b2 bj—l 1

* Not of the same type: Need to allow starting index = 1

* Independence guaranteed by non-crossing property

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

RNA Secondary Structure: DP over Intervals

Defn: Define OPT(i, j) = maximum # of base pairs in a secondary structure
of the substring b;b; --- b;.

Case 1: OPT does not match base b;. Value is OPT(i,j — 1). match by and b,

Case 2: OPT contains some base pair (by, b;).

Two independent subproblems: J l

e Oneonb;b; -+ bj_4 with value OPT(i, k — 1) o oo ; oo ° ,
i]

* Oneon by, 1by -+ bj_q with value OPT(k +1,j — 1) _
Intervals for recursive calls are shorter

OPT(, j)
B 0 ifj<i+4
~ |max{OPT(i,j — 1), max{1+OPT(i,k —1) + OPT(k+ 1,j—1): j>k+4, b~ b;}} ifj>i+4
where we write b ~ b’ iff they are Watson-Crick complement pairs A-U, U-A,C-G, or G-C

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Dynamic Programming Over Intervals: Iterative Solution

Evaluate in order of increasing interval length

RNA (b,,..,b_) {

for m = 0 to n-1 // interval length O(n) iterations
for i = 1 to n-m // interval start O(n) iterations
Jj=1+m
ifm< 5
OPT[i, j] = O
else {
OPT[i, j] = OPT[i, 3j-1] _ . on3)
for k = i to j-5 // split point O(n) iterations

if WatsonCrick(bk,bj)
if 1+OPT[i, k-1] + OPT[k+1l, j—-1] > OPT[i, j] {
OPT[i, j] = 1 + OPT[i, k-1] + OPT[k+1l, j-1]
}

}
return OPT[1l, n]

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Dynamic Programming Over Intervals: Iterative Solution

e 0 DP over intervals pattern
15 ofo
14 5100 * 2-D lower triangular portion
13 olofo]o * Fill sub-diagonals in order of
12 olojo]o]o distance from the diagonal
i olojofojo]. * Each of the O(n?) entries uses
10 ofofofofol |~ 0(n) pairs of entries in
start index ’ 0 ,ﬂ 019 a afixed row to the left and
1 s D/ N A P L oo
. 5 A a column above
6 0 0 * Time 0(n3), space 0(n?)
5 %
4 0 :
3 o J
2 ofoJofo]o %
1lo]ofo]o /
1 2 3 4 6 7 8 9 0 1 2 3 4 5 6
end index j

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Sequence Alighment

PAUL G. ALLEN SCHOOL

String Similarity

(o)

How similar are two strings?

- H - Eaaa
o 0H - BOBa
(o] r e

¢ occurrence

o

6 mismatches, 1 gap

(1)

Clearly a better - | - e H S|
matChIng o (o] (o] u r r = n (o]

1 mismatch, 1 gap

(1)

(0]
(1)

Maybe a better matching o < -] - e
e depends on cost of

gaps vs mismatches Al e = e.n

Q
(1)

0 mismatches, 3 gaps

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Edit Distance

Applications:
* Basis for Unixdif£.
* Speech recognition.
* Computational biology.

Edit distance: [Levenshtein 1966, Needleman-Wunsch 1970]
* Gap penalty 6; mismatch penalty a,,, if symbol p is replaced by symbol q.

* Cost = gap penalties + mismatch penalties.

CECTACT -CTGACCTACT
cEHBREEc: T - c@-T ccTv6e6aclTachr

aTC+aGT+aAG+2aCA 26+aCA

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Sequence Alighment

Sequence Alignment:
Given: Two strings X = x1x5 ...x, andY =y 1y, ...y,
Find: “Alignment” of X and Y of minimum edit cost.

Defn: An alignment M of X and Y is a set of ordered pairs x;-y;

s.t. each symbol of X and Y occurs in at most one pair
with no “crossing pairs”.

The pairs x;-y; and x;/-y; cross iff i < i’ butj > j'.

cost(M) = Z Oypy; + Z 6+ Z)]

(x,-,y]-)EM i: x; unmatched J: Yj unmatched
1] v]

mismatch gap

Note: if x; = y; then Ay = 0

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Example:
CTACCG vs TACATG

X1 X2 X3 X4 Xg X6

A VNN c | - 2
-TACTG

Y1 Y2 Y3 Ya Y5 DYe

M = {x2-Y1, X3-Y2, X4-Y3, X5-V4, X6-V6}

Sequence Alignment: Problem Structure

Defn: OPT(L, j) = min cost of aligning strings x1x; ... x; and y1y; ... y;.
Case 1: OPT matches x;-y;.
e Pay mismatch cost Ayiy; for x;-y; + min cost of aligning strings x1x; ... x;_1 and y1y2 ... Vj_1
Note: if x; = y; then Ay = 0
Case 2a: OPT leaves x; unmatched.
 Pay gap cost 6 for x; + min cost of aligning x1x5 ... x;_1 and y1y» - Yj
Case 2b: OPT leaves y; unmatched.

* Pay gap cost & for y; + min cost of aligning x1 x5 ...x; and y1y; ... ¥j_1

(j-& ifi=0
Gy,y;, + OPT(i—1,j — 1)
OPT(i,j) = { min & + OPT(i — 1,j) otherwise
8+ OPT(i,j —1)
L i-6 ifj=0

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Sequence Alignment: Algorithm

Sequence—-Alignment (m, n, x,x,...X , Y;Y¥,.---Y,r 6, a) {

for i = 0 tom
OPT[i, 0] =i &
for j =0 ton
OPT[O, j] = 3 &
for i =1 tom
for j =1 ton
OPT[i, j] = min(alx, y,] + OPT[i-1, j-1], O(mn)

d + OPT[i-1, 3jl,
0 + OPT[i, j-11)
return OPT[m, n]

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Example run with AGACATTG and GAGTTA: 6§ = a,;; =1

0
G| 1
Al 2
G| 3
T4
T|s
Al 6

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Example run with AGACATTG and GAGTTA: 6§ = a,;; =1

P>
RN @
w0
Slo| >
nlo| -
)N N |
N oo | @

0
G| 1
Al 2
G| 3
T4
T|s
Al 6

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Example run with AGACATTG and GAGTTA: 6§ = a,;; =1

w|s |0
Slo| >
nlo| -
)N N |
N oo | @

RlRLrIRLD>
NIRRT
LRI wD>

0
G| 1
Al 2
G| 3
T4
T|s
Al 6

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Example run with AGACATTG and GAGTTA: 6§ = a,;; =1

N[RrIRr|R|)D>
RINR N
NlRr|IMdMIWD
NN w O
wlwlis|lun|dD
sl
|||
oVl ®

0
G| 1
Al 2
G| 3
T4
T|s
Al 6

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Example run with AGACATTG and GAGTTA: 6§ = a,;; =1

nlip|lwWIN|IR|IFRP|IFLD
rlw|Nn|R,INMNIFRINMNIO
wlw|Nnd|INMNIRINIWD
prlwlwin|iIdlw|inxO
wlp|lw|lw|lw|s|lw|D
rlwlw|lr|d|ln|o|HA
rMwlslvulw|lo|Nw|H
Slanlunlu|lo|l<N]lo | ©

0
G| 1
Al 2
G| 3
T4
T|s
Al 6

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Example run with AGACATTG and GAGTTA: 6§ = a,;; =1

G
A
G
T
T
A

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Example run with AGACATTG and GAGTTA: 6§ = a,;; =1

Optimal Alignment

AGACATTG
_GAG_TTA

G
A
G
T
T
A

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Genbank and WGS Statistics

Bases Sequences
1,000,000,000,
000’000 — (Gen... 10,000,000,000 — Gen...
— WGS — WGS
10,000,000,000,
000 100,000,000
100,000,000,000
1,000,000
1,000,000,000
10,000
10,000,000
0 0
1985 1990 1995 2000 2005 2010 2015 2020 1985 1990 1995 2000 2005 2010 2015 2020

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Sequence Alignment: Linear Space

e Lines of code fordif£f: m,n at mostin 1000’s
* Computational biology: m, n may be in 100,000’s.
10 billions ops OK, but 10GB array?

Q: Can we avoid using quadratic space?

Easy: Optimal valuein O(m + n) space and O(mn) time.
 Compute OPT(i, ®) from OPT(i — 1, °).
* No longer a simple way to recover alignment itself.

Theorem: [Hirschberg 1975] Optimal alignment in O(m + n) space and O(mn) time.
* Clever combination of divide-and-conquer and dynamic programming.
* Inspired by idea of Savitch from complexity theory.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Sequence Alignment: Linear Space

Edit distance graph: Horizontal & vertical edges weight 6

Diagonal edge into each node (i, j) weight Ay,

€ Y1 Y2 Y3 Vs Vs Y
> > > > :.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Sequence Alignment: Linear Space

Edit distance graph: Horizontal & vertical edges weight 6

Diagonal edge into each node (i, j) weight Ay,

€ Y1 Y2 Y3 Vs Vs Y
> > > > :.

Let di,+(I,J) = length of shortest
path from (0, 0) to (i, j)

Then OPT(i,j) — dStaI‘t(i'j)'

For any fixed j can compute all
Asiart(s,) in O(n + m) space
O (nm) time

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Sequence Alignment: Linear Space

Reversed edit distance graph: Horizontal & vertical edges weight &

Diagonal edge into each node (i, j) weight Qi 1yj41

€ Y1 Y2 Y3 Vs Vs Ve

A

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Sequence Alignment: Linear Space

Reversed edit distance graph: Horizontal & vertical edges weight &

Diagonal edge into each node (i, j) weight Qi 1yj41

€ Y1 Y2 Y3 Vs Vs Ve

A

Let d.,4(i,J) = length of shortest
path from (m, n) to (i, j)

For any fixed j can compute all
dengls,j)in O(n + m) space
0 (nm) time

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Sequence Alignment: Linear Space

Edit distance graph: Horizontal & vertical edges weight 6

Diagonal edge into each node (i, j) weight Ay,

€ Y1 Y2 Y3 Y4 Vs

Ye

>
>

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Optimal alignment includes exactly
one node (Z,j) in column j

That node minimizes

dstart(i:j) + dend (i;j)
which equals OPT(m, n)

Divide & conquer:
Find this for j = n/2 and recurse

Sequence Alignment: Linear Space

Edit distance graph: Horizontal & vertical edges weight 6

Diagonal edge into each node (i, j) weight Uiy,

€ Y1 Y2 Y3 Y4 Vs

Ye

>
>

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Optimal alignment includes exactly
one node (i,j) in column j

That node minimizes

dstart(i;j) + dend (i:j)
which equals OPT(m, n)

Divide & Conquer:
Find this for j = n/2 and recurse
Re-use space for second call.

Analytical details

Write T (m, n) for the time cost.
* Recurrence T(m,n) =T(i,n/2)+T(m —i,n/2) + O(mn)
T(1,n)=0(m), T(m,1) = 0(m)

* Solution T(m,n) = O(mn).
* Not only is the value of n halved for the two subproblems, but
the lengths of the first strings still only sum to m.

* Proof via induction (Exercise).

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Another side of practice

In practice the algorithm is usually run on smaller chunks of a large
string, e.g. m and n are lengths of genes so a few thousand characters

* Researchers want all alignments that are close to optimal not just
the optimal solution

 Basic algorithm is run with
» 2 rows/columns for values as in the space-saving solution, but

 all mn pointers since the whole table of pointers (2 bits each)
will fit in RAM

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

