CSE 421 Introduction to Algorithms

Lecture 13: Dynamic Programming
RNA folding, Sequence Alignment

Dynamic Programming for Optimization

1. Formulate the (optimum) value as a recurrence relation or recursive algorithm
2. Figure out the possible values of parameters in the recursive calls.

- This should be "small", i.e., bounded by a low-degree polynomial
- Can use memoization to store a cache of previously computing values

3. Specify an order of evaluation for the recurrence so that you already have the partial results stored in memory when you need them.

- Produces iterative code
- Store extra information to be able to reconstruct optimal solution and add reconstruction code

Once you have an iterative DP solution: see if you can save space.

Dynamic Programming Patterns so far

Fibonacci pattern:

- 1-D, $O(1)$ immediately prior
- $O(\mathbf{1})$ space

Weighted interval scheduling pattern:

- 1-D, O (1) arbitrary prior
- $O(n)$ space
 $O(\boldsymbol{n})$

Longest increasing subsequence pattern:

- 1-D, all $\boldsymbol{n}-1$ prior
- $O(\boldsymbol{n})$ space
$O\left(\boldsymbol{n}^{\mathbf{2}}\right)$

Knapsack pattern:

- 2-D, O(1) elements in previous row, above and arbitrary far to the left
- O(nW) space

- $O(W)$ space if only optimum value needed
- Maintain current and previous rows

Dynamic Programming over Intervals

In this different class of problems from ones we have seen before, there are

- 1-dimensional inputs
- A notion of optimization over intervals in that 1 dimension

A number of important problems fit this paradigm

- We focus on a version of one these: RNA Secondary Structure

RNA Secondary Structure

RNA (ribonucleic acid): String $B=b_{1} b_{2} \cdots b_{n}$ of bases over alphabet $\{A, C, G, U\}$ standing for adenine, cytosine, guanine, and uracil.

RNA Secondary Structure: RNA is single-stranded and tends to loop back and form bonds between pairs of its bases "base-pairs". This structure is essential for understanding behavior of the molecule.

Ex: GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA

RNA Secondary Structure

Defn: A secondary structure for an RNA sequence $B=\boldsymbol{b}_{1} \boldsymbol{b}_{2} \cdots \boldsymbol{b}_{\boldsymbol{n}}$ is a set of pairs $S=\left\{\left(\boldsymbol{b}_{\boldsymbol{i}}, \boldsymbol{b}_{\boldsymbol{j}}\right)\right\}$ that satisfy:

- [Watson-Crick condition] S is a matching and each pair in S is a Watson-Crick complement:

$$
A-U, U-A, C-G, \text { or } G-C .
$$

- [No sharp bends] The ends of each pair are separated by at least 4 intervening bases.

That is, if $\left(b_{i}, b_{j}\right) \in S$, then $i<j-4$.

- [Non-crossing] If $\left(\boldsymbol{b}_{\boldsymbol{i}}, \boldsymbol{b}_{\boldsymbol{j}}\right)$ and $\left(\boldsymbol{b}_{\boldsymbol{k}}, \boldsymbol{b}_{\ell}\right)$ are two pairs in S, then we cannot have $\boldsymbol{i}<\boldsymbol{k}<\boldsymbol{j}<\ell$.

Optimizing energy: The usual hypothesis is that an RNA molecule will form a secondary structure that optimizes the total free energy. Maximizing the \# of base pairs in S roughly maximizes free energy.

Given: an RNA molecule $B=b_{1} b_{2} \cdots b_{n}$,
Find: a secondary structure S for B maximizing the number of base pairs in S.

RNA Secondary Structure: Examples

Examples.

ok

sharp bend

crossing

RNA Secondary Structure: False Start

As usual we consider two cases based on the status of the last base in an optimal secondary structure

First attempt: Define $\operatorname{OPT}(j)=$ maximum \# of base pairs in a secondary structure of the substring $b_{1} b_{2} \cdots b_{j}$.
Case 1: OPT does not match base \boldsymbol{b}_{j}. Value is OPT $(\boldsymbol{j}-1)$.
Case 2: OPT contains some base pair $\left(b_{k}, b_{j}\right)$.
Two independent* subproblems:

- One on $b_{1} b_{2} \cdots b_{k-1}$ with value $\operatorname{OPT}(k-1)$
- One on $b_{k+1} b_{2} \cdots b_{j-1}$

- Not of the same type: Need to allow starting index $\neq \mathbf{1}$
* Independence guaranteed by non-crossing property

RNA Secondary Structure: DP over Intervals

Defn: Define OPT $(i, j)=$ maximum \# of base pairs in a secondary structure of the substring $b_{i} b_{2} \cdots b_{j}$.

Case 1: OPT does not match base b_{j}. Value is $\operatorname{OPT}(i, j-1)$.
match b_{k} and b_{j}
Case 2: OPT contains some base pair $\left(\boldsymbol{b}_{\boldsymbol{k}}, \boldsymbol{b}_{\boldsymbol{j}}\right)$.
Two independent subproblems:

- One on $b_{i} b_{2} \cdots b_{k-1}$ with value $\operatorname{OPT}(i, k-1)$

- One on $b_{k+1} b_{2} \cdots b_{j-1}$ with value $\operatorname{OPT}(k+1, j-1)$

Intervals for recursive calls are shorter
OPT (i, j)
$=\left\{\begin{array}{cl}0 & \text { if } j \leq i+4 \\ \max \left\{\operatorname{OPT}(i, j-1), \max \left\{1+\mathrm{OPT}(i, k-1)+\mathrm{OPT}(k+1, j-1): j>k+4, b_{k} \sim b_{j}\right\}\right\} & \text { if } j>i+4\end{array}\right.$
where we write $b \sim b^{\prime}$ iff they are Watson-Crick complement pairs $A-U, U-A, C-G$, or $G-C$

Dynamic Programming Over Intervals: Iterative Solution

Evaluate in order of increasing interval length

```
RNA (b},\mp@code{,..,},\mp@subsup{b}{n}{\prime})
    for m = 0 to n-1 // interval length O(n) iterations
        for i = 1 to n-m // interval start O(n) iterations
        j = i + m
        if m < 5
            OPT[i, j] = 0
        else {
            OPT[i, j] = OPT[i, j-1]
            for k = i to j-5 // split point O(n)iterations O( n
                if WatsonCrick ( (b, bj
                        if 1+OPT[i, k-1] + OPT[k+1, j-1] > OPT[i, j] {
                                OPT[i, j] = 1 + OPT[i, k-1] + OPT[k+1, j-1]
                                }
        }
    return OPT[1, n]
}
```


Dynamic Programming Over Intervals: Iterative Solution

start index
i

DP over intervals pattern

- 2-D lower triangular portion
- Fill sub-diagonals in order of distance from the diagonal
- Each of the $O\left(\boldsymbol{n}^{2}\right)$ entries uses $O(n)$ pairs of entries in
- a fixed row to the left and
- a column above
- Time $O\left(\boldsymbol{n}^{3}\right)$, space $O\left(\boldsymbol{n}^{2}\right)$

Sequence Alignment

String Similarity

How similar are two strings?

- ocurrance
- occurrence

Clearly a better
matching

Maybe a better matching

- depends on cost of gaps vs mismatches

0 mismatches, 3 gaps

Edit Distance

Applications:

- Basis for Unix diff.
- Speech recognition.
- Computational biology.

Edit distance: [Levenshtein 1966, Needleman-Wunsch 1970]

- Gap penalty δ; mismatch penalty $\alpha_{p q}$ if symbol p is replaced by symbol q.
- Cost = gap penalties + mismatch penalties.

Sequence Alignment

Sequence Alignment:

Given: Two strings $X=x_{1} x_{2} \ldots x_{m}$ and $Y=y_{1} y_{2} \ldots y_{n}$
Find: "Alignment" of X and Y of minimum edit cost.
Defn: An alignment M of X and Y is a set of ordered pairs $x_{i}-y_{j}$ s.t. each symbol of X and Y occurs in at most one pair with no "crossing pairs".

Note: if $x_{i}=y_{j}$ then $\alpha_{x_{i} y_{j}}=\mathbf{0}$

Sequence Alignment: Problem Structure

Defn: $\operatorname{OPT}(i, j)=$ min cost of aligning strings $x_{1} x_{2} \ldots x_{i}$ and $y_{1} y_{2} \ldots y_{j}$.
Case 1: OPT matches $x_{i}-y_{j}$.

- Pay mismatch cost $\alpha_{x_{i} y_{j}}$ for $x_{i}-y_{j}+\min$ cost of aligning strings $x_{1} x_{2} \ldots x_{i-1}$ and $y_{1} y_{2} \ldots y_{j-1}$ Note: if $x_{i}=y_{j}$ then $\alpha_{x_{i} y_{j}}=0$
Case 2a: OPT leaves x_{i} unmatched.
- Pay gap cost δ for $x_{i}+$ min cost of aligning $x_{1} x_{2} \ldots x_{i-1}$ and $y_{1} y_{2} \ldots y_{j}$

Case 2b: OPT leaves y_{j} unmatched.

- Pay gap cost δ for $y_{j}+\min$ cost of aligning $x_{1} x_{2} \ldots x_{i}$ and $y_{1} y_{2} \ldots y_{j-1}$

$$
\operatorname{OPT}(i, j)=\left\{\begin{array}{cc}
j \cdot \boldsymbol{\delta} & \text { if } i=0 \\
\min \left\{\begin{array}{cc}
\alpha_{x_{i} y_{j}}+\operatorname{OPT}(i-1, j-1) \\
\delta+\operatorname{OPT}(i-1, j) \\
\delta+\operatorname{OPT}(i, j-1)
\end{array}\right. & \text { otherwise } \\
i \cdot \delta & \text { if } j=0
\end{array}\right.
$$

Sequence Alignment: Algorithm

```
Sequence-Alignment (m, n, m}\mp@subsup{x}{1}{}\mp@subsup{x}{2}{}\ldots\mp@subsup{x}{m}{},\mp@subsup{y}{1}{}\mp@subsup{y}{2}{}\ldots\mp@subsup{y}{n}{},\delta,\alpha) 
    for i = O to m
        OPT[i, 0] = i \delta
    for j = 0 to n
        OPT[0, j] = j \delta
    for i = 1 to m
        for j = 1 to n
            OPT[i, j] = min(\alpha[x ( }\mp@subsup{\mathbf{y}}{\textrm{j}}{}]+\textrm{OPT}[i-1,j-1]
                    \delta + OPT[i-1, j],
                        \delta + OPT[i, j-1])
    return OPT[m, n]
}
```

Example run with AGACATTG and GAGTTA: $\delta=\alpha_{\text {mis }}=1$

		A	G	A	C	A	T	T	G
	0	1	2	3	4	5	6	7	8
G	1								
A	2								
G	3								
T	4								
T	5								
A	6								

Example run with AGACATTG and GAGTTA: $\delta=\alpha_{\text {mis }}=1$

		A	G	A	C	A	T	T	G
	0	1	2	3	4	5	6	7	8
G	1	1	1	2	3	4	5	6	7
A	2								
G	3								
T	4								
T	5								
A	6								

Example run with AGACATTG and GAGTTA: $\delta=\alpha_{\text {mis }}=1$

		A	G	A	C	A	T	T	G
	0	1	2	3	4	5	6	7	8
G	1	1	1	2	3	4	5	6	7
A	2	1	2	1					
G	3								
T	4								
T	5								
A	6								

Example run with AGACATTG and GAGTTA: $\delta=\alpha_{\text {mis }}=1$

	A		G	A	C	A	T	T	G
	0	1	2	3	4	5	6	7	8
G	1	1	1	2	3	4	5	6	7
A	2	1	2	1	2	3	4	5	6
G	3	2	1	2	2	3	4	5	5
T	4								
T	5								
A	6								

Example run with AGACATTG and GAGTTA: $\delta=\alpha_{\text {mis }}=1$

		A	G	A	C	A	T	T	G
	0	1	2	3	4	5	6	7	8
G	1	1	1	2	3	4	5	6	7
A	2	1	2	1	2	3	4	5	6
G	3	2	1	2	2	3	4	5	5
T	4	3	2	2	3	3	3	4	5
T	5	4	3	3	3	4	3	3	4
A	6	5	4	3	4	3	4	4	4

Example run with AGACATTG and GAGTTA: $\delta=\alpha_{\text {mis }}=1$

Example run with AGACATTG and GAGTTA: $\boldsymbol{\delta}=\alpha_{\text {mis }}=1$

Optimal Alignment AGACATTG
_ $G A G _T T A$

Genbank and WGS Statistics

Sequence Alignment: Linear Space

- Lines of code for diff: m,n at most in 1000's
- Computational biology: m, n may be in 100,000's.

10 billions ops OK, but 10GB array?
Q: Can we avoid using quadratic space?
Easy: Optimal value in $O(\boldsymbol{m}+\boldsymbol{n})$ space and $O(\boldsymbol{m n})$ time.

- Compute OPT($i, \bullet)$ from OPT($i-1, \bullet)$.
- No longer a simple way to recover alignment itself.

Theorem: [Hirschberg 1975] Optimal alignment in $O(\boldsymbol{m}+\boldsymbol{n})$ space and $O(\boldsymbol{m n})$ time.

- Clever combination of divide-and-conquer and dynamic programming.
- Inspired by idea of Savitch from complexity theory.

Sequence Alignment: Linear Space

Edit distance graph: Horizontal \& vertical edges weight $\boldsymbol{\delta}$
Diagonal edge into each node $(\boldsymbol{i}, \boldsymbol{j})$ weight $\boldsymbol{\alpha}_{x_{i} y_{j}}$

Sequence Alignment: Linear Space

Edit distance graph: Horizontal \& vertical edges weight $\boldsymbol{\delta}$
Diagonal edge into each node (i, j) weight $\alpha_{x_{i} y_{j}}$

Let $\boldsymbol{d}_{\text {start }}(\boldsymbol{i}, \boldsymbol{j})=$ length of shortest path from $(0,0)$ to (i, j)

Then $\operatorname{OPT}(\boldsymbol{i}, \boldsymbol{j})=\boldsymbol{d}_{\text {start }}(\boldsymbol{i}, \boldsymbol{j})$.
For any fixed j can compute all $\boldsymbol{d}_{\text {start }}(\cdot, \boldsymbol{j})$ in $O(\boldsymbol{n}+\boldsymbol{m})$ space O (nm) time

Sequence Alignment: Linear Space

Reversed edit distance graph: Horizontal \& vertical edges weight $\boldsymbol{\delta}$
Diagonal edge into each node $(\boldsymbol{i}, \boldsymbol{j})$ weight $\alpha_{x_{i+1} y_{j+1}}$

Sequence Alignment: Linear Space

Reversed edit distance graph: Horizontal \& vertical edges weight $\boldsymbol{\delta}$
Diagonal edge into each node (i, j) weight $\alpha_{x_{i+1} y_{j+1}}$

Let $\boldsymbol{d}_{\mathrm{end}}(\boldsymbol{i}, \boldsymbol{j})=$ length of shortest path from (m, n) to (i, j)

For any fixed j can compute all $\boldsymbol{d}_{\text {end }}(\cdot, \boldsymbol{j})$ in $O(\boldsymbol{n}+\boldsymbol{m})$ space O(nm) time

Sequence Alignment: Linear Space

Edit distance graph: Horizontal \& vertical edges weight $\boldsymbol{\delta}$
Diagonal edge into each node (i, j) weight $\alpha_{x_{i} y_{j}}$

Optimal alignment includes exactly one node $(\boldsymbol{i}, \boldsymbol{j}$) in column \boldsymbol{j}

That node minimizes

$$
\boldsymbol{d}_{\mathrm{start}}(\boldsymbol{i}, \boldsymbol{j})+\boldsymbol{d}_{\mathrm{end}}(\boldsymbol{i}, \boldsymbol{j})
$$

which equals $\operatorname{OPT}(\boldsymbol{m}, \boldsymbol{n})$
Divide \& conquer:
Find this for $j=n / 2$ and recurse

Sequence Alignment: Linear Space

Edit distance graph: Horizontal \& vertical edges weight $\boldsymbol{\delta}$
Diagonal edge into each node $(\boldsymbol{i}, \boldsymbol{j})$ weight $\boldsymbol{\alpha}_{x_{i} y_{j}}$

Optimal alignment includes exactly one node $(\boldsymbol{i}, \boldsymbol{j})$ in column \boldsymbol{j}

That node minimizes

$$
d_{\text {start }}(i, j)+d_{\text {end }}(i, j)
$$

which equals $\operatorname{OPT}(m, n)$
Divide \& Conquer:
Find this for $j=n / 2$ and recurse Re-use space for second call.

Analytical details

Write $\boldsymbol{T}(\boldsymbol{m}, \boldsymbol{n})$ for the time cost.

- Recurrence $T(m, n)=T(i, n / 2)+T(m-i, n / 2)+O(m n)$

$$
T(\mathbf{1}, \boldsymbol{n})=O(\boldsymbol{n}), T(\boldsymbol{m}, \mathbf{1})=O(\boldsymbol{m})
$$

- Solution $T(m, n)=O(m n)$.
- Not only is the value of \boldsymbol{n} halved for the two subproblems, but the lengths of the first strings still only sum to m.
- Proof via induction (Exercise).

Another side of practice

In practice the algorithm is usually run on smaller chunks of a large string, e.g. m and n are lengths of genes so a few thousand characters

- Researchers want all alignments that are close to optimal not just the optimal solution
- Basic algorithm is run with
- 2 rows/columns for values as in the space-saving solution, but
- all $m n$ pointers since the whole table of pointers (2 bits each) will fit in RAM

