CSE 421 Introduction to Algorithms

Lecture 13: Dynamic Programming RNA folding, Sequence Alignment

Dynamic Programming for Optimization

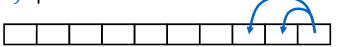
- 1. Formulate the *(optimum) value* as a recurrence relation or recursive algorithm
- 2. Figure out the possible values of parameters in the recursive calls.
 - This should be "small", i.e., bounded by a low-degree polynomial
 - Can use memoization to store a cache of previously computing values
- 3. Specify an order of evaluation for the recurrence so that you already have the partial results stored in memory when you need them.
 - Produces iterative code
 - Store extra information to be able to reconstruct optimal solution and add reconstruction code

Once you have an iterative DP solution: see if you can save space.

Dynamic Programming Patterns so far

Fibonacci pattern:

- 1-D, O(1) immediately prior
- *0*(1) space



Weighted interval scheduling pattern:

- 1-D, O(1) arbitrary prior
- *0*(*n*) space

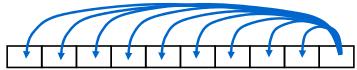
O(n)

 $O(n^2)$

 $O(\mathbf{n})$

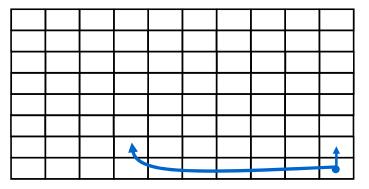
Longest increasing subsequence pattern:

- 1-D, all n-1 prior
- *0*(*n*) space



Knapsack pattern:

- 2-D, O(1) elements in previous row, above and arbitrary far to the left
- *0*(*nW*) space



O(nW)

- O(W) space if only optimum value needed
 - Maintain current and previous rows

Dynamic Programming over Intervals

In this different class of problems from ones we have seen before, there are

- 1-dimensional inputs
- A notion of optimization over intervals in that 1 dimension

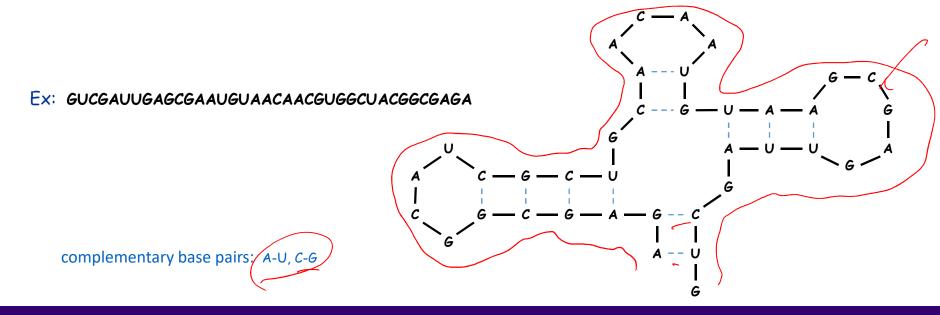
A number of important problems fit this paradigm

• We focus on a version of one these: RNA Secondary Structure

RNA Secondary Structure

RNA (ribonucleic acid): String $B = b_1 b_2 \cdots b_n$ of bases over alphabet $\{A, C, G, U\}$ standing for adenine, cytosine, guanine, and uracil.

RNA Secondary Structure: RNA is single-stranded and tends to loop back and form bonds between pairs of its bases "base-pairs". This structure is essential for understanding behavior of the molecule.



RNA Secondary Structure

Defn: A secondary structure for an RNA sequence $B = b_1 b_2 \cdots b_n$ is a set of pairs $S = \{(b_i, b_j)\}$ that satisfy:

- [Watson-Crick condition] **S** is a matching and each pair in **S** is a Watson-Crick complement: **A-U**, **U-A**, **C-G**, or **G-C**.
- [No sharp bends] The ends of each pair are separated by at least 4 intervening bases. That is, if $(b_i, b_i) \in S$, then i < j 4.
- [Non-crossing] If (b_i, b_j) and (b_k, b_ℓ) are two pairs in S, then we cannot have $i < k < j < \ell$.

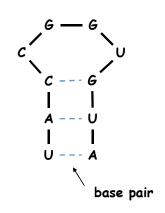
Optimizing energy: The usual hypothesis is that an RNA molecule will form a secondary structure that optimizes the total free energy. Maximizing the # of base pairs in # roughly maximizes free energy.

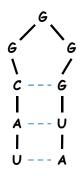
Given: an RNA molecule $B = b_1 b_2 \cdots b_n$,

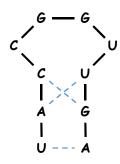
Find: a secondary structure **S** for **B** maximizing the number of base pairs in **S**.

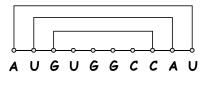
RNA Secondary Structure: Examples

Examples.



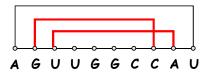






A U G G G C A U

← ≤ 4 →



ok

sharp bend

crossing

RNA Secondary Structure: False Start

As usual we consider two cases based on the status of the last base in an optimal secondary structure

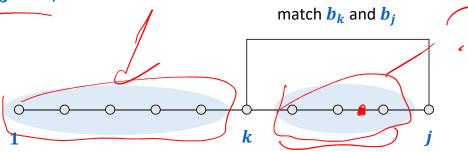
First attempt: Define OPT(j) = maximum # of base pairs in a secondary structure of the substring $b_1b_2\cdots b_j$.

Case 1: **OPT** does not match base b_i . Value is **OPT**(j-1).

Case 2: **OPT** contains some base pair (b_k, b_j) .

Two independent* subproblems:

- One on $b_1b_2 \cdots b_{k-1}$ with value OPT(k-1)
- One on $b_{k+1}b_2 \cdots b_{j-1}$
 - Not of the same type: Need to allow starting index ≠ 1



^{*} Independence guaranteed by non-crossing property

RNA Secondary Structure: DP over Intervals

Defn: Define $OPT(i, j) = maximum # of base pairs in a secondary structure of the substring <math>b_i b_2 \cdots b_j$.

Case 1: **OPT** does not match base b_j . Value is **OPT**(i, j - 1).

Case 2: **OPT** contains some base pair (b_k, b_i) .

Two independent subproblems:

- One on $b_i b_2 \cdots b_{k-1}$ with value $\mathsf{OPT}(i, k-1)$
- One on $b_{k+1}b_2 \cdots b_{j-1}$ with value $\mathsf{OPT}(k+1,j-1)$

OPT(i,j) OPT(len,j)

match b_k and b_i

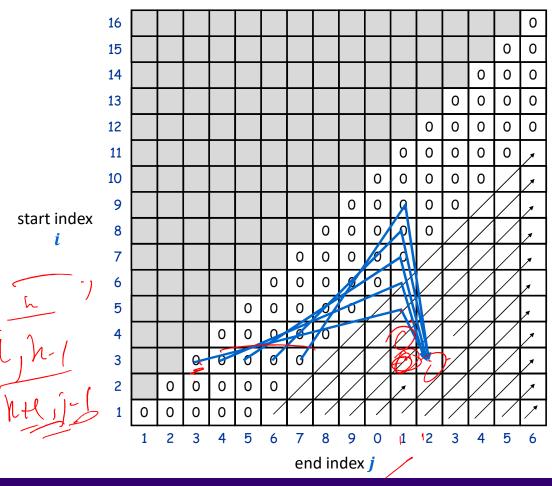
Intervals for recursive calls are shorter

$$\begin{aligned} & \mathsf{OPT}(i,j) \\ &= \left\{ \begin{aligned} & 0 \\ & \mathsf{max}\{\mathsf{OPT}(i,j-1), \mathsf{max}\{1+\mathsf{OPT}(i,k-1)+\mathsf{OPT}(k+1,j-1): \ j>k+4, b_k \sim b_j\} \right\} \end{aligned} \end{aligned} \text{ if } \underbrace{j \leq i+4}_{j} \\ & \mathsf{where we write } \underbrace{b \sim b'}_{j} \text{ iff they are Watson-Crick complement pairs } A-\mathsf{U}, \mathsf{U-A}, \mathsf{C-G}, \text{ or } \mathsf{G-C} \end{aligned}$$

Dynamic Programming Over Intervals: Iterative Solution

Evaluate in order of increasing interval length

Dynamic Programming Over Intervals: Iterative Solution



DP over intervals pattern

- 2-D lower triangular portion
- Fill sub-diagonals in order of distance from the diagonal
- Each of the O(n²) entries uses
 O(n) pairs of entries in
 - a fixed row to the left and
 - a column above
- Time $O(n^3)$, space $O(n^2)$

Sequence Alignment

String Similarity

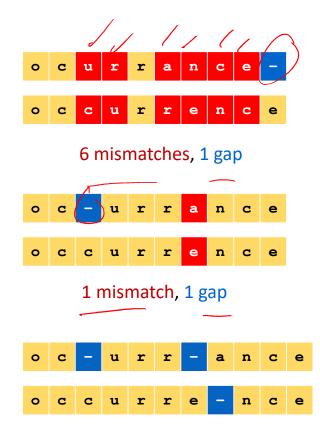
How similar are two strings?

- ocurrance
- occurrence

Clearly a better matching

Maybe a better matching

depends on cost of gaps vs mismatches



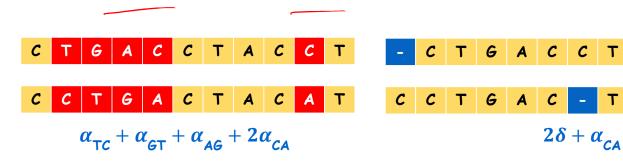
Edit Distance

Applications:

- Basis for Unix diff.
- Speech recognition.
- Computational biology.

Edit distance: [Levenshtein 1966, Needleman-Wunsch 1970]

- Gap penalty δ ; mismatch penalty α_{pq} if symbol p is replaced by symbol q.
- Cost = gap penalties + mismatch penalties.



Sequence Alignment

Sequence Alignment:

Given: Two strings $X = x_1 x_2 \dots x_m$ and $Y = y_1 y_2 \dots y_n$

Find: "Alignment" of **X** and **Y** of minimum edit distance.

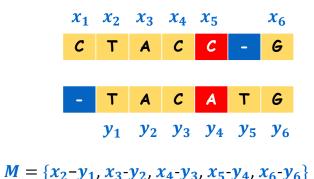
Defn: An alignment M of X and Y is a set of ordered pairs $x_i - y_j$ s.t. each symbol of X and Y occurs in at most one pair with no "crossing pairs".

The pairs $x_i - y_j$ and $x_{i'} - y_{j'}$ cross iff i < i' but j > j'.

$$cost(M) = \sum_{\substack{(x_i, y_j) \in M \\ \text{mismatch}}} \alpha_{x_i y_j} + \sum_{\substack{i: x_i \text{ unmatched} \\ \text{gap}}} \delta + \sum_{j: y_j \text{ unmatched}} \delta$$

Note: if $x_i = y_j$ then $\alpha_{x_i y_j} = 0$

Example: CTACCG vs TACATG



Sequence Alignment: Problem Structure

Defn: OPT(i, j) = min cost of aligning strings $x_1x_2 ...x_i$ and $y_1y_2 ...y_j$.

Case 1: OPT matches $x_i - y_i$.

• Pay mismatch cost $\alpha_{x_iy_j}$ for x_i - y_j + min cost of aligning strings $x_1x_2 \dots x_{i-1}$ and $y_1y_2 \dots y_{j-1}$ Note: if $x_i = y_j$ then $\alpha_{x_iy_j} = 0$

Case 2a: OPT leaves x_i unmatched.

• Pay gap cost δ for x_i + min cost of aligning $x_1x_2 ... x_{i-1}$ and $y_1y_2 ... y_j$

Case 2b: OPT leaves y_i unmatched.

• Pay gap cost δ for y_j + min cost of aligning $x_1x_2 ... x_i$ and $y_1y_2 ... y_{j-1}$

$$\mathsf{OPT}(\pmb{i},\pmb{j}) = egin{cases} \pmb{j} \cdot \pmb{\delta} & \text{if } \pmb{i} = \pmb{0} \ & & & & & & & & \\ \pmb{\alpha_{x_iy_j}} + \mathsf{OPT}(\pmb{i} - \pmb{1}, \pmb{j} - \pmb{1}) & & & & & & & \\ \pmb{\delta} + \mathsf{OPT}(\pmb{i} - \pmb{1}, \pmb{j}) & & & & & & & & \\ \pmb{\delta} + \mathsf{OPT}(\pmb{i}, \pmb{j} - \pmb{1}) & & & & & & & & \\ \pmb{i} \cdot \pmb{\delta} & & & & & & & & & & \end{aligned}$$

Sequence Alignment: Algorithm

```
Sequence-Alignment (m, n, \mathbf{x}_1\mathbf{x}_2...\mathbf{x}_m, \mathbf{y}_1\mathbf{y}_2...\mathbf{y}_n, \delta, \alpha) {
	for i = 0 to m
	OPT[i, 0] = i \delta
	for j = 0 to n
	OPT[0, j] = j \delta

	for i = 1 to m
	for j = 1 to n
	OPT[i, j] = min(\alpha[\mathbf{x}_{i}, \mathbf{y}_j] + \text{OPT}[i-1, j-1],
	\delta + \text{OPT}[i-1, j],
	\delta + \text{OPT}[i, j-1])
	return OPT[m, n]
}
```

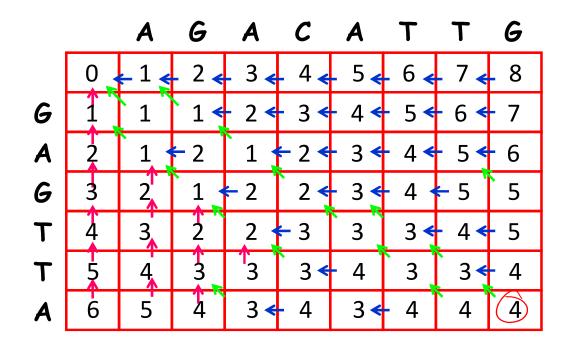
	6	A	G	A	C	A	T	T	G		
a	0	1	2	3	4	5	6	7	8		
G	1 -	737	25								
A	2										
G	3										
T	4										
T	5										
A	6										

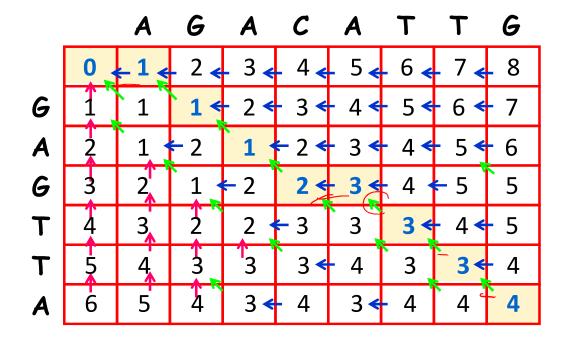
		A	G	A	C	A	T	T	G
	0	1	2	3	4	5	6	7	8
G	1	1	1	2	3	4	5	6	7
A	2	71							
A G	3								
T	4								
T	5								
A	6								

		A	G	A	- C	A	T	T	G
	0	1	2	3	4	5	6	7	8
G	1	1	1	2	3	4	5	6	7
A	2	1	2	1					
A	3								
T	4								
T	5								
A	6								

		A	G	A	C	A	T	T	G
	0	1	2	3	4	5	6	7	8
G	1	1	1	2	3	4	5	6	7
A	2	1	2	1	2	3	4	5	6
G	3	2	1	2	2	3	4	5	⁷ 5
T	4								
T	5								
A	6								

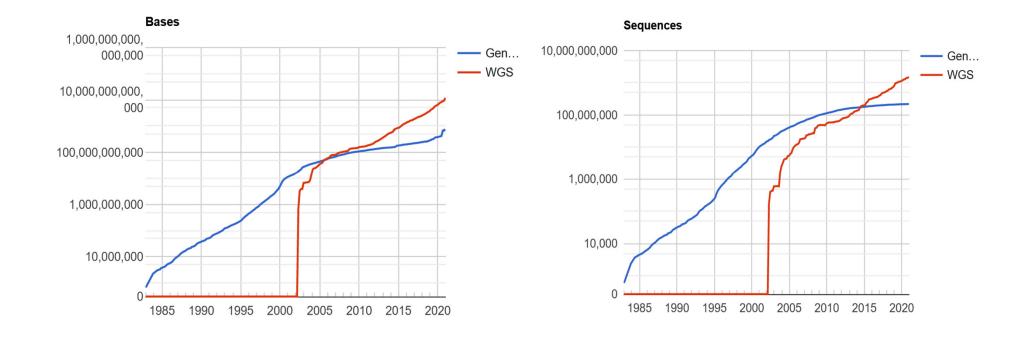
		A	G	A	C	A	T	T	G
	0	1	2	3	4	5	6	7	8
G	1	1	1	2	3	4	5	6	7
A	2	1	2	1	2	3	4	5	6
G	3	2	1	2	2	3	4	5	5
T	4	3	2	2	3	3	3	4	5
T	5	4	3	3	3	4	3	3	4
A	6	5	4	3	4	3	4	4	4





Optimal Alignment

Genbank and WGS Statistics



- Lines of code for **diff**: **m**, **n** at most in 1000's
- Computational biology: m, n may be in 100,000's.

10 billions ops OK, but 10GB array?

Q: Can we avoid using quadratic space?

Easy: Optimal value in O(m + n) space and O(mn) time.

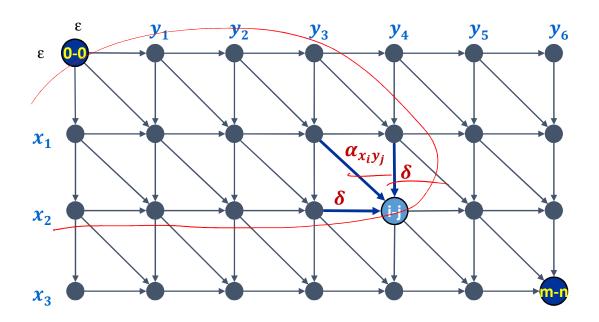
- Compute $OPT(i, \bullet)$ from $OPT(i-1, \bullet)$.
- No longer a simple way to recover alignment itself.

Theorem: [Hirschberg 1975] Optimal alignment in O(m + n) space and O(mn) time.

- Clever combination of divide-and-conquer and dynamic programming.
- Inspired by idea of Savitch from complexity theory.

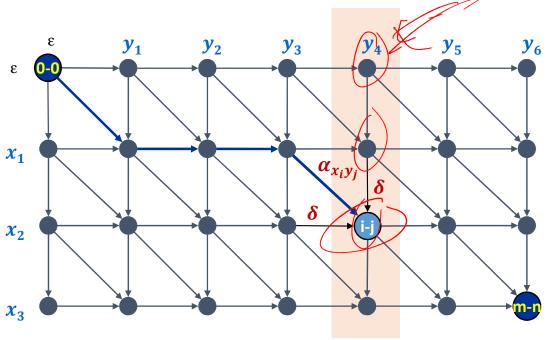
Edit distance graph: Horizontal & vertical edges weight δ

Diagonal edge into each node (i, j) weight $\alpha_{x_i y_i}$



Edit distance graph: Horizontal & vertical edges weight δ

Diagonal edge into each node (i, j) weight $\alpha_{x_i y_i}$



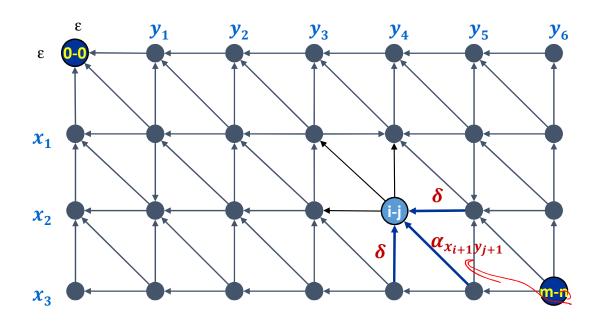
Let $d_{\text{start}}(i, j)$ = length of shortest path from (0, 0) to (i, j)

Then $OPT(i, j) = d_{start}(i, j)$.

For any fixed j can compute all $d_{\text{start}}(\cdot, j)$ in O(n + m) space O(nm) time

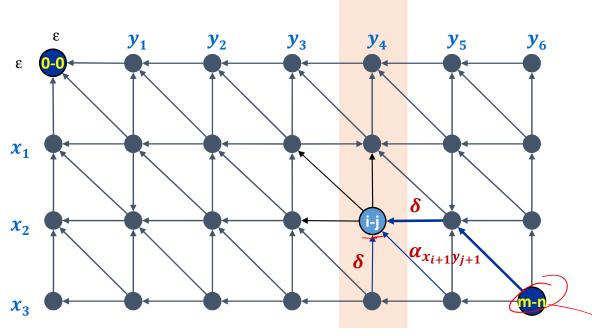
Reversed edit distance graph: Horizontal & vertical edges weight **\delta**

Diagonal edge into each node (i, j) weight $\alpha_{x_{i+1}y_{j+1}}$



Reversed edit distance graph: Horizontal & vertical edges weight δ

Diagonal edge into each node (i, j) weight $\alpha_{x_{i+1}y_{j+1}}$

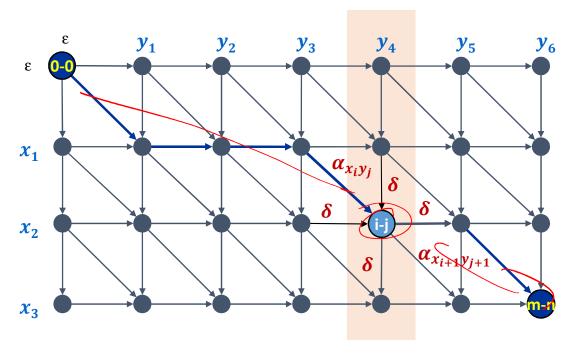


Let $d_{end}(i, j)$ = length of shortest path from (m, n) to (i, j)

For any fixed j can compute all $d_{end}(\cdot, j)$ in O(n + m) space O(nm) time

Edit distance graph: Horizontal & vertical edges weight δ

Diagonal edge into each node (i, j) weight $\alpha_{x_i y_i}$



Optimal alignment includes exactly one node (i, j) in column j

That node minimizes

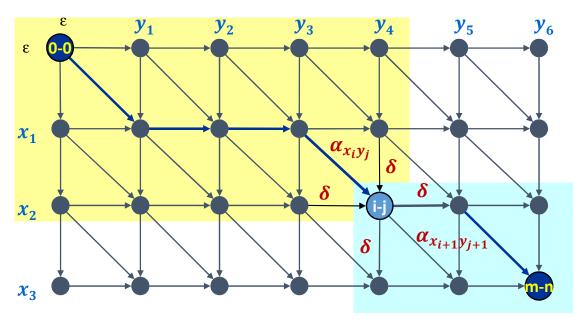
$$d_{ ext{start}}(i,j) + d_{ ext{end}}(i,j)$$
 which equals $ext{OPT}(m,n)$

Divide & conquer:

Find this for j = n/2 and recurse

Edit distance graph: Horizontal & vertical edges weight δ

Diagonal edge into each node (i, j) weight $\alpha_{x_i y_i}$



Optimal alignment includes exactly one node (i, j) in column j

That node minimizes

$$d_{
m start}({\it i,j}) + d_{
m end}({\it i,j})$$
 which equals ${
m OPT}({\it m,n})$

Divide & Conquer:

Find this for j = n/2 and recurse Re-use space for second call.

Analytical details

Write T(m, n) for the time cost.

• Recurrence
$$T(m, n) = T(i, n/2) + T(m - i, n/2) + O(mn)$$

 $T(1, n) = O(n), \ T(m, 1) = O(m)$

- Solution T(m, n) = O(mn).
 - Not only is the value of n halved for the two subproblems, but the lengths of the first strings still only sum to m.
 - Proof via induction (Exercise).

Another side of practice

In practice the algorithm is usually run on smaller chunks of a large string, e.g. m and n are lengths of genes so a few thousand characters

- Researchers want all alignments that are close to optimal not just the optimal solution
- Basic algorithm is run with
 - 2 rows/columns for values as in the space-saving solution, but
 - all mn pointers since the whole table of pointers (2 bits each)
 will fit in RAM