CSE 421
Introduction to Algorithms

Lecture 10: Divide and Conquer
Median, Quicksort

Today

Divide and conquer examples
e Simple, randomized median algorithm
* Expected O(n) time
 Surprising deterministic median algorithm
* Worst case O(n) time

* Expected time analysis for randomized QuickSort
e Expected O(n logn) time

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Order problems: Find the kth smallest

Runtime measures
e # of machine instructions
* # of comparisons

e 15t Smallest = Minimum
* 0(n) time
* n — 1 comparisons

e 2" Smallest
e Still O(n) time and comparisons...

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Median and Selection

Median: k' smallestfork = n/2

* Easily computed in O(n logn) time with sorting.

Q: How can Median be solved in O(n) time?

A: Use divide and conquer ...
e But Median for a smaller set isn’t a natural subproblem for Median.

* Idea: Generalize Median so natural subproblems are of the same type.

Selection:

Given: A (multi-)set § of n numbers, and an integer k.

Find: The k" smallest numberin S.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Linear Time Divide and Conquer for Selection

General idea:

* Use a linear amount of work to reduce™* Selection for a set of size n
to Selection for a set that is a constant factor smaller than n.

Recurrence
e T(n) = T(n/b) + O(n) forsome b > 1.

Apply the Master Theoremfora=1,k=1,andb > 1
e Since a® = 1 < b solution is O(n).

*The value of k will also change to some k' for the recursive call.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

General Recursive Selection

Select(k, S)
Choose element x from § “pivot”
S, «—{yeS|y<x}
Spe—1YES|y=x} 0 (n) time to partition
Sc—{yeS|y>x}
if[S;| =k
return Select(k, §,)
elseif |S;| + |S;| = k
return x
else
return Select(k — [S.| — |SE|, S¢)

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Implementing: “Choose element x ...”

Select(k, S)
Choose element x from S
S, «—{yeS|y<x}
Sp—{yesS|y=x}
Sc—{yeS|y>x}
if |S;| =k
return Select(k, §,)
elseif |S; |+ [Sgl = k
return x
else

Want to choose an x so that max(|S; /|, |S¢|) is as
small as possible. That is, want x near the middle.

Two algorithms:
e QuickSelect
* Choose x at random
* Good average case performance

* BFPRT Algorithm

* Choose x by a complicated, but linear time
method guaranteeing good split

* Good worst case performance

return Select(k — [S.| — |SE|, S¢)

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

QuickSelect: Random Choice of Pivot

QuickSelect:

* Run Select always choosing the pivot element x uniformly at random from
among the elements of §.

Theorem: QuickSelect has expected runtime O(n).

Proof: Let T(n) be the expected runtime of QuickSelect
on worst-case input sets S of size n and integer k.

(The only randomness in the expectation is in the random choices of the algorithm.)

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

QuickSelect: Random Choice of Pivot

Consider a call to Select(k, S) and sorted order of elementsin §

Elements of § listed in sorted order

[| I []
t t t t
bad x good x good x bad x

With probability = 1/2 pivot x is good
 For any good pivot the recursive call has subproblem size < 3n/4
* After 2 calls QuickSelect has expected problem size < 3n/4

SoT(n) = T(n/b) + O(n)forb =4/3 >1 = Expected O(n) time ®

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Blum-Floyd-Pratt-Rivest-Tarjan Algorithm

QuickSelect requires randomness to find a good pivot and is only good
on the average.

The BFPRT Algorithm always finds a good pivot that will guarantee to
leave a sub-problem of size < 3n/4. Here is how it works...

 Split § into n/5 sets of size 5.
 Sort each set of size 5 and choose the median of that set as its representative.

e Compute the median of those /5 representatives. Another recursion!
* Let the pivot x be that median.

Why does it work...?

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

BFPRT, Step 1: Construct sets of size 5, sort each set

nout. 13, 15, 32, 14, 95, 5, 16, 45, 86, 65, 62, 41, 81, 52, 32, 32, 12, 73, 25, 81, 47, 8,
nput: 69, 9, 7, 81,18, 25, 42, 91, 64, 98, 96, 91, 6, 51, 21, 12, 36, 11, 11,9, 5. 17, 77

13 |5 62 |32 |47 |81 |e4 |51 11
15 |16 |41 12 |8 18 |98 |21 |9
Group: |32 |45 |81 |73 |69 |25 |ee |12 |5
14 |86 |52 |25 |9 42 |91 38 |17
95 |e5 |32 |81 |7 91 |6 11 77
95 |86 |81 |81 |69 |91 |98 |51 |77
32 |es |62 |73 |47 |81 |96 |36 |17
Z;’;EE?Ch 15 |45 |52 (32 |9 42 |of 21 11 0(n)
14 |16 |41 |25 |8 25 |64 |12 |9
13 |5 32 [12 |7 18 |6 11 5

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

BFPRT, Step 2: Find median of column medians

95 86 81 81 69 91 98 51 77
col 32 65 62 47 81 96 36 17
olumn
medians: 15 45 52 9 42 91 21 11 T(n/S)
14 16 41 8 25 64 12 9
13 5 32 7 18 6 11 5

Imagining rearranging columns by column median

95 86 81 81 69 91 98 51 77
32 65 62 47 81 96 36 17
15 45 52 9 42 91 21 11
14 16 41 8 25 64 12 9
13 5 32 7 18 6 11 5

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

BFPRT, Step 2: Find median of column medians

95 86 81 81 69 91 98 51 77
col 32 65 62 47 81 96 36 17
olumn
medians: 15 45 52 9 42 91 21 11 T(n/S)
14 16 41 8 25 64 12 9
13 5 32 7 18 6 11 5

Imagining rearranging columns by column medians

95 o1 77 69 81 91 98 86 81
32 36 17 47 81 96 65 62
15 21 11 9 42 91 45 52
14 12 9 8 25 64 16 41
13 11 5 7 18 6 5 32

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

BFPRT, Step 2: Find median of column medians

95 86 81 81 69 91 98 51 77
ol 32 65 62 47 81 96 36 17
olumn
diane: 15 45 52 9 42 91 21 11 T(n/5)
14 16 41 8 25 64 12 9
13 5 32 7 18 6 11 5
Choose x to be that median of medians
95 51 77 69 81 91 98 86 81
32 36 17 47 y& 81 96 65 62
NotinS; |15 |21 |11 |9 ((32) [42 |91 |45 |52
14 12 9 8 5 o5 64 16 41
Size =2 n/4 |3 1 5 7 12 18 |6 5 32

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

BFPRT, Step 2: Find median of column medians

Column
medians:

95 86 81 81 69 91 98 51 77
32 65 62 L3 47 81 96 36 17
15 45 52 ((32) |9 42 91 21 11
14 16 41 25 8 25 64 12 9

13 5 32 12 7 18 6 11 5

Choose x to be that median of medians

95 51 77 69 91 98 86 81
32 36 17 47 81 96 65 62
15 21 11 9 42 91 45 52
14 12 9 8 25 64 16 41
13 11 5 7 18 6 5 32

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

T(n/5)

Notin $;

Size > n/4

s |S|<3n

BPFRT Recurrence

Choose partitioning element x
e T(m/5) + O(n)
Partitioning based on x
* O(n)
Cost of recursive subproblem
c T(3n/4)
Recurrence
e T(n) =T(3n/4)+T(n/5) + 0(n)

Why is the solution O(n)?

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Solutionto T(n) =T(3n/4) + T(n/5) + cnis O(n)

Key property of recurrence:
- 3/4+1/5< 1
* Sumis 19/20

Cost at top level is cn; so at other levels, linear in the sum of problem sizes
* Sum of problem sizes decreases by 19/20 factor per level of recursion
 Total cost is geometric series with ratio < 1 and largest term cn
* Solution is O(n).

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

QuickSort

QuickSort(S)
if |S| < 1returnS
Choose element x from § “pivot”
S, «—{yeS|y<x}
Sp—{yesS|y=x}
Sc—{yeS|y>x}
return [QuickSort(S,;), Sz, QuickSort(S;)]

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

QuickSort

Pivot selection

* Choose the median
e T(n) =2TMn/2) + 0(n) O(nlogn)

* Choose arbitrary element
* Worst case — 0(n?)

* Element might be smallest, so one subproblem hassizen — 1

* Average case — O (n logn) similar to QuickSelect analysis

e Choose random pivot
* Expected time - 0(n logn)

We’ll give an analysis for this bound ...

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Expected Runtime for QuickSort: “Global analysis”

Runtime is proportional to # of comparisons
* Count comparisons for simplicity

Master theorem kind of analysis won’t work ...

Instead, use a clever global analysis:
* Number elements a4, a,, ..., a,, based on final sorted order
* Let p;; = Probability that QuickSort compares a; and a;

Expected number of comparisons:

n—-1vn
i=1 Zj=i+1DPij

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

4

Expected Runtime for QuickSort: “Global analysis’

2
j—i+1

Lemma: For i < j we have p;; <

Proof: If a;and a; are compared then it must be during the call
when they end up in different subproblems

* Before that, they aren’t compared to each other
» After they aren’t compared to each other

During this call they are only compared if one of them is the pivot

All elements between a; and a; are also in the call:
* = set has size at least j — i + 1 in this call
* Probability one of the 2 is chosen as pivotis< 2/(j—i+1). H

PAUL G. ALLEN SCHOOL

Expected Runtime for QuickSort: “Global analysis”

Harmonic serles Sum

.. 2
Lemma: For i < j we have p;j < -

j—i+1’
Expected number of comparisons: Fact: H, = Inn + 0(1)
n-— 1 n n-— 1 n 2
Z j=i+1 pl] — Z j= l+1]-_i_|_1
n— l+1 2 P
=ynlyn- oy fork=j-—i
n-— 1 n 1
<2 2ic1|Xk=17,

<2nH,
=2nlnn+0(n) <1.387nlog, n

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

QuickSort in Practice (Nonrandom)

Separating out set S of elements equal to the pivot is important
e Use 4-finger algorithm instead of 2-finger algorithm for partitioning

e Collect equal elements at each end and swap to middle at end of
partitioning (saves a lot on size of recursive set sizes)

If nis very small use InsertionSort instead (also good if set is nearly sorted)

Smalln
* choose middle element of subarray as pivot

Medium n
* choose median of 3 elements as pivot

Large n
e consider 9 elements in 3 groups of 3; choose median of medians as pivot

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

