CSE 421 Introduction to Algorithms

Lecture 10: Divide and Conquer Median, Quicksort

Today

Divide and conquer examples

- Simple, randomized median algorithm
 - Expected O(n) time
- Surprising deterministic median algorithm
 - Worst case O(n) time
- Expected time analysis for randomized QuickSort
 - Expected $O(n \log n)$ time

Order problems: Find the k^{th} smallest

Runtime measures

- # of machine instructions
- # of comparisons
- 1st Smallest = Minimum
 - *0*(*n*) time
 - n-1 comparisons
- 2nd Smallest
 - Still O(n) time and comparisons...

Median and Selection

Median: k^{th} smallest for k = n/2

• Easily computed in $O(n \log n)$ time with sorting.

Q: How can Median be solved in O(n) time?

A: Use divide and conquer ...

- But Median for a smaller set isn't a natural subproblem for Median.
- Idea: Generalize Median so natural subproblems are of the same type.

Selection:

Given: A (multi-)set S of n numbers, and an integer k.

Find: The k^{th} smallest number in S.

Linear Time Divide and Conquer for Selection

General idea:

• Use a linear amount of work to reduce* Selection for a set of size n to Selection for a set that is a *constant factor smaller* than n.

Recurrence

• T(n) = T(n/b) + O(n) for some b > 1.

Apply the Master Theorem for a = 1, k = 1, and b > 1

• Since $a^k = 1 < b$ solution is O(n).

*The value of k will also change to some k' for the recursive call.

General Recursive Selection

```
Select(k, S)

Choose element x from S "pivot" S_L \leftarrow \{y \in S \mid y < x\} S_E \leftarrow \{y \in S \mid y = x\} O(n) time to partition S_G \leftarrow \{y \in S \mid y > x\} if |S_L| \geq k return Select(k, S_L) else if |S_L| + |S_E| \geq k return x else return x
```

Implementing: "Choose element x ..."

```
Select(k, S)

Choose element x from S

S_L \leftarrow \{y \in S \mid y < x\}

S_E \leftarrow \{y \in S \mid y = x\}

S_G \leftarrow \{y \in S \mid y > x\}

if |S_L| \ge k

return Select(k, S_L)

else if |S_L| + |S_E| \ge k

return x

else
```

Want to choose an x so that $\max(|S_L|, |S_G|)$ is as small as possible. That is, want x near the middle.

Two algorithms:

- QuickSelect
 - Choose x at random
 - Good average case performance
- BFPRT Algorithm
 - Choose x by a complicated, but linear time method guaranteeing good split
 - Good worst case performance

QuickSelect: Random Choice of Pivot

QuickSelect:

 Run Select always choosing the pivot element x uniformly at random from among the elements of S.

Theorem: QuickSelect has expected runtime O(n).

Proof: Let T(n) be the expected runtime of QuickSelect on worst-case input sets S of size n and integer k.

(The only randomness in the expectation is in the random choices of the algorithm.)

QuickSelect: Random Choice of Pivot

Consider a call to Select(k, S) and sorted order of elements in S

Elements of **S** listed in sorted order

With probability $\geq 1/2$ pivot x is good

- For any good pivot the recursive call has subproblem size $\leq 3n/4$
- After 2 calls QuickSelect has expected problem size $\leq 3n/4$

So
$$T(n) = T(n/b) + O(n)$$
 for $b = 4/3 > 1 \implies \text{Expected } O(n)$ time

Blum-Floyd-Pratt-Rivest-Tarjan Algorithm

QuickSelect requires randomness to find a good pivot and is only good on the average.

The BFPRT Algorithm always finds a good pivot that will guarantee to leave a sub-problem of size $\leq 3n/4$. Here is how it works...

- Split S into n/5 sets of size 5.
- Sort each set of size 5 and choose the median of that set as its representative.
- Compute the median of those n/5 representatives. Another recursion!
- Let the pivot x be that median.

Why does it work...?

BFPRT, Step 1: Construct sets of size 5, sort each set

Input:

13, 15, 32, 14, 95, 5, 16, 45, 86, 65, 62, 41, 81, 52, 32, 32, 12, 73, 25, 81, 47, 8, 69, 9, 7, 81, 18, 25, 42, 91, 64, 98, 96, 91, 6, 51, 21, 12, 36, 11, 11, 9, 5, 17, 77

Group:

13	5	62	32	47	81	64	51	11
15	16	41	12	8	18	98	21	9
32	45	81	73	69	25	96	12	5
14	86	52	25	9	42	91	36	17
95	65	32	81	7	91	6	11	77

Sort each group:

95	86	81	81	69	91	98	51	77
32	65	62	73	47	81	96	36	17
15	45	52	32	9	42	91	21	11
14	16	41	25	8	25	64	12	9
13	5	32	12	7	18	6	11	5

O(n)

Column medians:

95	86	81	81	69	91	98	51	77
32	65	62	73	47	81	96	36	17
15	45	52	32	9	42	91	21	11
14	16	41	25	8	25	64	12	9
13	5	32	12	7	18	6	11	5

T(n/5)

Imagining rearranging columns by column median

95	86	81	81	69	91	98	51	77
32	65	62	73	47	81	96	36	17
15	45	52	32	9	42	91	21	11
14	16	41	25	8	25	64	12	9
13	5	32	12	7	18	6	11	5

Column medians:

95	86	81	81	69	91	98	51	77
32	65	62	73	47	81	96	36	17
15	45	52	32	9	42	91	21	11
14	16	41	25	8	25	64	12	9
13	5	32	12	7	18	6	11	5

T(n/5)

Imagining rearranging columns by column medians

95	51	77	69	81	91	98	86	81
32	36	17	47	73	81	96	65	62
15	21	11	9	32	42	91	45	52
14	12	9	8	25	25	64	16	41
13	11	5	7	12	18	6	5	32

Column medians:

95	86	81	81	69	91	98	51	77
32	65	62	73	47	81	96	36	17
15	45	52	32	9	42	91	21	11
14	16	41	25	8	25	64	12	9
13	5	32	12	7	18	6	11	5

T(n/5)

Choose x to be that median of medians

Not in S_G

Size $\geq n/4$

95	51	77	69	81	91	98	86	81
32	36	17	47	73	81	96	65	62
15	21	11	9	32	42	91	45	52
14	12	9	8	25	25	64	16	41
13	11	5	7	12	18	6	5	32

Column medians:

95	86	81	81	69	91	98	51	77
32	65	62	73	47	81	96	36	17
15	45	52	32	9	42	91	21	11
14	16	41	25	8	25	64	12	9
13	5	32	12	7	18	6	11	5

T(n/5)

Choose x to be that median of medians

95	51	77	69	81	91	98	86	81
32	36	17	47	73	81	96	65	62
15	21	11	9	32	42	91	45	52
14	12	9	8	25	25	64	16	41
13	11	5	7	12	18	6	5	32

Not in S_L Size $\geq n/4$

$$|S_L|,|S_G|\leq \frac{3n}{4}$$

BPFRT Recurrence

Choose partitioning element x

•
$$T(n/5) + O(n)$$

Partitioning based on x

• O(n)

Cost of recursive subproblem

• T(3n/4)

Recurrence

• T(n) = T(3n/4) + T(n/5) + O(n)

Why is the solution O(n)?

Solution to
$$T(n) = T(3n/4) + T(n/5) + cn$$
 is $O(n)$

Key property of recurrence:

- 3/4 + 1/5 < 1
- Sum is 19/20

Cost at top level is *cn*; so at other levels, linear in the sum of problem sizes

- Sum of problem sizes decreases by 19/20 factor per level of recursion
- Total cost is geometric series with ratio < 1 and largest term cn
- Solution is O(n).

QuickSort

```
\begin{aligned} &\text{QuickSort}(S) \\ &\text{if } |S| \leq 1 \text{ return } S \\ &\text{Choose element } x \text{ from } S \quad \text{"pivot"} \\ &S_L \leftarrow \{y \in S \mid y < x \} \\ &S_E \leftarrow \{y \in S \mid y = x \} \\ &S_G \leftarrow \{y \in S \mid y > x \} \\ &\text{return } [\text{QuickSort}(S_L), S_E, \text{QuickSort}(S_G)] \end{aligned}
```

QuickSort

Pivot selection

- Choose the median
 - T(n) = 2 T(n/2) + O(n) $O(n \log n)$
- Choose arbitrary element
 - Worst case $O(n^2)$
 - Element might be smallest, so one subproblem has size n-1
 - Average case $-O(n \log n)$ similar to QuickSelect analysis
- Choose random pivot
 - Expected time $O(n \log n)$

We'll give an analysis for this bound ...

Expected Runtime for QuickSort: "Global analysis"

Runtime is proportional to # of comparisons

Count comparisons for simplicity

Master theorem kind of analysis won't work ...

Instead, use a clever global analysis:

- Number elements $a_1, a_2, ..., a_n$ based on final sorted order
- Let p_{ij} = Probability that QuickSort compares a_i and a_j

Expected number of comparisons:

$$\sum_{i=1}^{n-1} \sum_{j=i+1}^n p_{ij}$$

Expected Runtime for QuickSort: "Global analysis"

Lemma: For i < j we have $p_{ij} \le \frac{2}{j-i+1}$.

Proof: If a_i and a_j are compared then it must be during the call when they end up in different subproblems

- Before that, they aren't compared to each other
- After they aren't compared to each other

During this call they are only compared if one of them is the pivot

All elements between a_i and a_i are also in the call:

- \Rightarrow set has size at least j i + 1 in this call
- Probability one of the 2 is chosen as pivot is $\leq 2/(j-i+1)$.

Expected Runtime for QuickSort: "Global analysis"

Lemma: For i < j we have $p_{ij} \le \frac{2}{i-i+1}$.

Expected number of comparisons:

$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} p_{ij} \leq \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n-1} \sum_{k=1}^{n-i+1} \frac{2}{k+1} \qquad \text{for } k = j-i$$

$$< 2 \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{1}{k}$$

$$< 2 n H_n$$

Harmonic series sum:

$$H_n = \sum_{k=1}^n \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}$$

Fact: $H_n = \ln n + O(1)$

for
$$k = j - i$$

 $= 2 n \ln n + O(n) \le 1.387 n \log_2 n$

QuickSort in Practice (Nonrandom)

Separating out set S_E of elements equal to the pivot is important

- Use 4-finger algorithm instead of 2-finger algorithm for partitioning
 - Collect equal elements at each end and swap to middle at end of partitioning (saves a lot on size of recursive set sizes)
- If n is very small use InsertionSort instead (also good if set is nearly sorted)
- Small *n*
 - choose middle element of subarray as pivot
- Medium n.
 - choose median of 3 elements as pivot
- Large n
 - consider 9 elements in 3 groups of 3; choose median of medians as pivot