CSE 421 Introduction to Algorithms

Lecture 10: Divide and Conquer

Median, Quicksort

Today

Divide and conquer examples

- Simple, randomized median algorithm
- Expected $O(\boldsymbol{n})$ time
- Surprising deterministic median algorithm
- Worst case $O(\boldsymbol{n})$ time
- Expected time analysis for randomized QuickSort
- Expected $O(\boldsymbol{n} \log \boldsymbol{n})$ time

Order problems: Find the $\boldsymbol{k}^{\text {th }}$ smallest

Runtime measures

- \# of machine instructions
- \# of comparisons
- $1^{\text {st }}$ Smallest $=$ Minimum
- $O(\boldsymbol{n})$ time
- n - 1 comparisons
- $2^{\text {nd }}$ Smallest
- Still $O(n)$ time and comparisons...

Median and Selection

Median: $\boldsymbol{k}^{\text {th }}$ smallest for $\boldsymbol{k}=\boldsymbol{n} / \mathbf{2}$

- Easily computed in $O(\boldsymbol{n} \log \boldsymbol{n})$ time with sorting.

Q: How can Median be solved in $O(\mathbf{n})$ time?
A: Use divide and conquer ...

- But Median for a smaller set isn't a natural subproblem for Median.
- Idea: Generalize Median so natural subproblems are of the same type.

Selection:

Given: A (multi-)set S of \boldsymbol{n} numbers, and an integer \boldsymbol{k}.
Find: The $\boldsymbol{k}^{\text {th }}$ smallest number in S.

Linear Time Divide and Conquer for Selection ${ }_{a=1}$

General idea:

$$
T(n)=T(n / b)+0(n)
$$

- Use alinear amount of work to reduce* Selection for a set of size n to Selection for a set that is a constant factor smaller than n. n / b

Recurrence

$$
a n]+0(a / b)+o\left(A / b^{2}\right.
$$

- $T(n)=T(n / b)+O(n)$ for some $b>1$.

Apply the Master Theorem for $\boldsymbol{a}=\mathbf{1}, \boldsymbol{k}=\mathbf{1}$, and $b>\mathbf{1}$

- Since $\boldsymbol{a}^{k}=\mathbf{1}<b$ solution is $\boldsymbol{O}(n)$.
*The value of k will also change to some k^{\prime} for the recursive call.

General Recursive Selection

Select (k, S)
Choose element x from S "pivot"

$$
\begin{aligned}
& S_{L} \leftarrow\{y \in S \mid y<x\} \\
& S_{E} \leftarrow\{y \in S \mid y=x\} \\
& S_{G} \leftarrow\{y \in S \mid y \geq x\} \\
& \text { if }\left|S_{L}\right| \geq k
\end{aligned}
$$

$$
\text { return Select(} \left.k, S_{L}\right)
$$

$$
\text { else if }\left|S_{L}\right|+\left|S_{E}\right| \geq \boldsymbol{k}
$$

$$
\text { return } x
$$

else

$$
\text { return Select }\left(k-\left|S_{L}\right|-\left|S_{E}\right|, S_{G}\right)
$$

Implementing: "Choose element \boldsymbol{x}..."

Select (k, S)
Choose element x from S
$S_{L} \leftarrow\{y \in S \mid y<x\}$
$S_{E} \leftarrow\{y \in S \mid y=x\}$
$S_{G} \leftarrow\{y \in S \mid y>x\}$
if $\left|S_{L}\right| \geq \boldsymbol{k}$
return Select $\left.\left(k, S_{L}\right)\right)$
else if $\left|S_{L}\right|+\left|S_{E}\right| \geq k$ return x
else

Want to choose an x so that $\max \left(\left|S_{L}\right|,\left|S_{G}\right|\right)$ is as small as possible. That is, want x near the middle.

Two algorithms:

- QuickSelect
- Choose x at random
- Good average case performance
- BFPRT Algorithm
- Choose x by a complicated, but linear time method guaranteeing good split
- Good worst case performance
return Select $\left(k-\left|S_{L}\right|-\left|S_{E}\right|,\left(S_{G}\right)\right)$

QuickSelect: Random Choice of Pivot

QuickSelect:

- Run Select always choosing the pivot element x uniformly at random from among the elements 0 f S.

Theorem: QuickSelect has expected runtime $O(n)$.

Proof: Let $\boldsymbol{T}(\boldsymbol{n})$ be the expected runtime of QuickSelect on worst-case input sets S of size n and integer \boldsymbol{k}.
(The only randomness in the expectation is in the random choices of the algorithm.)

QuickSelect: Random Choice of Pivot

Consider a call to Select (\boldsymbol{k}, S) and sorted order of elements in S
Elements of S listed in sorted order

With probability $\geq 1 / 2$ pivot x is good

- For any good pivot the recursive call has subproblem size $\leq 3 n / 4$
- After 2 calls QuickSelect has expected problem size $\leq 3 n / 4$

So $T(n)=T(n / b)+O(n)$ for $b=4 / 3>1 \quad \Rightarrow$ Expected $O(n)$ time

Blum-Floyd-Pratt-Rivest-Tarjan Algorithm

QuickSelect requires randomness to find a good pivot and is only good on the average.

The BFPRT Algorithm always finds a good pivot that will guarantee to leave a sub-problem of size $\leq 3 n / 4$. Here is how it works...

- Split S into $n / 5$ sets of size 5 .
- Sort each set of size 5 and choose the median 6 that set as its representative.
- Compute the median of those $n / 5$ representatives. Another recursion!
- Let the pivot x be that median.

Why does it work...?

BFPRT, Step 1: Construct sets of size 5, sort each set

Input:
$13,15,32,14,95,5,16,45,86,65,62,41,81,52,32,32,12,73,25,81,47,8$, $69,9,7,81,18,25,42,91,64,98,96,91,6,51,21,12,36,11,11,9,5,17,77$

Group:

13	5	62	32	47	81	64	51	11
15	16	41	12	8	18	98	21	9
32	45	81	73	69	25	96	12	5
14	86	52	25	9	42	91	36	17
95	65	32	81	7	91	6	11	77

95	86	81	81	69	91	98	51	77
32	65	62	73	47	81	96	36	17
15	45	52	32	9	42	91	21	11
14	16	41	25	8	25	64	12	9
13	5	32	12	7	18	6	11	5

$O(\boldsymbol{n})$

BFPRT, Step 2: Find median of column medians

Column medians:

95	86	81	81	69	91	98	51	77
32	65	62	73	47	81	96	36	17
15	45	52	32	9	42	91	21	11
14	16	41	25	8	25	64	12	9
13	5	32	12	7	18	6	11	5

$T(n / 5)$

Imagining rearranging columns by column median

95	86	81	81	69	91	98	51	77
32	65	62	73	47	81	96	36	17
15	45	52	32	9	42	91	21	11
14	16	41	25	8	25	64	12	9
13	5	32	12	7	18	6	11	5

BFPRT, Step 2: Find median of column medians

Column medians:

95	86	81	81	69	91	98	51	77
32	65	62	73	47	81	96	36	17
15	45	52	32	9	42	91	21	11
14	16	41	25	8	25	64	12	9
13	5	32	12	7	18	6	11	5

$$
T(n / 5)
$$

Imagining rearranging columns by column medians

95	51	77	69	81	91	98	86	81
32	36	17	47	73	81	96	65	62
15	21	11	9	32	42	91	45	52
14	12	9	8	25	25	64	16	41
13	11	5	7	12	18	6	5	32

BFPRT, Step 2: Find median of column medians

Column medians:

95	86	81	81	69	91	98	51	77
32	65	62	73	47	81	96	36	17
15	45	52	32	9	42	91	21	11
14	16	41	25	8	25	64	12	9
13	5	32	12	7	18	6	11	5

$T(n / 5)$

Choose x to be that median of medians

95	51	77	69	81	91	98	86	81	
	32	36	17	47	73	81	96	65	62
Not in \boldsymbol{S}_{G}	15	21	11	9	32	42	91	45	52
	Size $\geq \boldsymbol{n} / \mathbf{4}$	14	12	9	8	25	25	64	16
	13	11	5	7	12	18	6	5	32

BFPRT, Step 2: Find median of column medians

Column medians:

95	86	81	81	69	91	98	51	77
32	65	62	73	47	81	96	36	17
15	45	52	32	9	42	91	21	11
14	16	41	25	8	25	64	12	9
13	5	32	12	7	18	6	11	5

Choose x to be that median of medians

95	51	77	69	81	91	98	86	81
32	36	17	47	73	81	96	65	62
15	21	11	9	32	42	91	45	52
14	12	9	8	25	25	64	16	41
13	11	5	7	12	18	6	5	32

Not in S_{L}
Size $\geq \boldsymbol{n} / 4$
$\left|S_{L}\right|,\left|S_{G}\right| \leq \frac{3 \eta}{4}$

BPFRT Recurrence

Choose partitioning element x

- $T(n / 5)+O(n)$

Partitioning based on \boldsymbol{x}

- $O(n)$

Cost of recursive subproblem

- $T(3 n / 4)$

Recurrence

- $T(n)=T(3 n / 4)+T(n / 5)+O(n)$

Why is the solution $O(n)$?
$\frac{3}{4}+\frac{1}{5}=\frac{15}{20}+\frac{4}{20}=\frac{19}{20}$

Solution to $T(n)=T(3 n / 4)+T(n / 5)+c n$ is $O(n)$

Key property of recurrence:
$\cdot 3 / 4+1 / 5<1$

- Sum is $19 / 20$

$$
c\left(n+\frac{19}{20} n+\left(\frac{19}{20}\right)^{2} n+-\right.
$$

Cost at top level is $\mathbf{c n}$; so at other levels, linear in the sum of problem sizes

- Sum of problem sizes decreases by 19/20 factor per level of frecursion
- Total cost is geometric series with ratio $<\mathbf{1}$ and largest term cn
- Solution is $O(n)$.

QuickSort

QuickSort(S)
if $|S| \leq \mathbb{1}$ return S
Choose element x from S "pivot"
$S_{L} \leftarrow\{y \in S \mid y<x\}$
$S_{E} \leftarrow\{y \in S \mid y=x\}$
$S_{G} \leftarrow\{y \in S \mid y>x\}$
return [QuickSort $\left(S_{L}\right), S_{E}$ QuickSort $\left(S_{G}\right)$]

QuickSort

Pivot selection

- Choose the median
- $\boldsymbol{T}(\boldsymbol{n})=2 \boldsymbol{T}(\boldsymbol{n} / 2)+O(n) \quad O(n \log n)$
- Choose arbitrary elemènt
- Worst case $-O\left(n^{2}\right)$
- Element might be smallest, so one subproblem has size $\boldsymbol{n} \mathbf{- 1}$
- Average case - $O(\boldsymbol{n} \log \boldsymbol{n})$ similar to QuickSelectanalysis
- Choose random pivot
- Expected time $-O(\boldsymbol{n} \log \boldsymbol{n})$

We'll give an analysis for this bound ...

Expected Runtime for QuickSort: "Global analysis"

Runtime is proportional to \# of comparisons

- Count comparisons for simplicity

Master theorem kind of analysis won't work ...
Instead, use a clever global analysis:

- Number elements $a_{1}, a_{2}, \ldots, a_{n}$ based on final sorted order
- Let $p_{i j}=$ Probability that QuickSort compares a_{i} and a_{j}

Expected number of comparisons:

$$
\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} p_{i j}
$$

Expected Runtime for QuickSort: "Global analysis"

Lemma: For $i<j$ we have $p_{i j} \leq \frac{2}{j-i+1}$.
Proof: If a_{i} and a_{j} are compared then it must be during the call when they end up in different subproblems

- Before that, they aren't compared to each other
- After they aren't compared to each other

During this call they are only compared if one of them is the pivot
All elements between a_{i} and a_{j} are also in the call:

- \Rightarrow set has size at least $j-i+1$ in this call
- Probability one of the 2 is chosen as pivot is $\leq 2 /(j-i+1)$.

Expected Runtime for QuickSort: "Global analysis"

Lemma: For $i<j$ we have $p_{i j} \leq \frac{2}{j-i+1}$.
Expected number of comparisons:

$$
\begin{aligned}
\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} p_{i j} & \leq \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \underbrace{\frac{2}{j-i+1}} \\
& =\sum_{i=1}^{n-1} \sum_{k=1}^{n-i+1} \frac{2}{k+1} \quad \text { for } k=j-i \\
& <2 \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{1}{k} \\
& <2 n H_{n} \\
& =2 n \ln n+O(n) \leq 1.387 n \log _{2} n
\end{aligned}
$$

Harmonic series sum:

$$
H_{n}=\sum_{k=1}^{n} \frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n}
$$

Fact: $\boldsymbol{H}_{n}=\ln \boldsymbol{n}+O(\mathbf{1})$

QuickSort in Practice (Nonrandom)

Separating out set S_{E} of elements equal to the pivot is important

- Use 4-finger algorithm instead of 2-finger algorithm for partitioning
- Collect equal elements at each end and swap to middle at end of partitioning (saves a lot on size of recursive set sizes)
- If \boldsymbol{n} is very small use InsertionSort instead (also good if set is nearly sorted)
- Small n
- choose middle element of subarray as pivot
- Medium n
- choose median of 3 elements as pivot
- Large n
- consider 9 elements in 3 groups of 3; choose median of medians as pivot

