CSE 421 Introduction to Algorithms

Lecture 8: Divide and Conquer

Algorithm Design Techniques

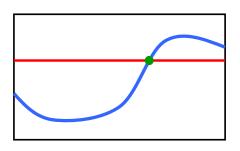
Divide & Conquer

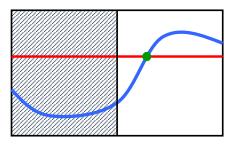
- Divide instance into subparts.
- Solve the parts recursively.
- Conquer by combining the answers

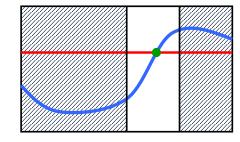
To truly fit Divide & Conquer

- each sub-part should be at most a constant fraction of the size of the original input instance
 - e.g. Mergesort, Binary Search, Quicksort (sort of), etc.

Binary search for roots (bisection method)







Given:

• Continuous function f and two points a < b with $f(a) \le 0$ and f(b) > 0

Find:

• Approximation within ε of c s.t. f(c) = 0 and a < c < b

Bisection method

```
Bisection(a, b, \varepsilon)
    if (b-a) \leq \varepsilon then
          return(a)
    else {
         c \leftarrow (a+b)/2
         if f(c) \leq 0 then
                 return(Bisection(c, b, \varepsilon))
         else
               return(Bisection(\alpha, c, \varepsilon))
```

Time Analysis

At each step we halved the size of the interval

- It started at size b a
- It ended at size &

So # of calls to f is $\log_2 ((b-a)/\varepsilon)$

Old Favorites

Binary search:

- One subproblem of half size plus one comparison
- Recurrence* for time in terms of # of comparisons
 - T(n) = T(n/2) + 1 for $n \ge 2$
 - T(1) = 0
- Solving shows that $T(n) = \lceil \log_2 n \rceil + 1$

Mergesort:

- Two subproblems of half size plus merge cost of n-1 comparisons
- Recurrence* for time in terms of # of comparisons
 - $T(n) \le 2T(n/2) + n 1$ for $n \ge 2$
 - T(1) = 0
- Roughly n comparisons at each of $\log_2 n$ levels of recursion so T(n) is roughly $n \log_2 n$

*We will implicitly assume that every input to $T(\cdot)$ is rounded up to the nearest integer.

Euclidean Closest Pair

Given:

• A sequence of n points $p_1, ..., p_n$ with real coordinates in d dimensions (\mathbb{R}^d)

Find:

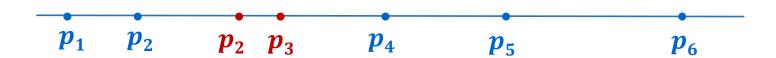
• A pair of points p_i, p_j s.t. the Euclidean distance $d(p_i, p_j)$ is minimized

What is the first algorithm you can think of?

• Try all $\Theta(n^2)$ possible pairs

Can we do better if dimension d = 1?

Closest Pair in 1 Dimension



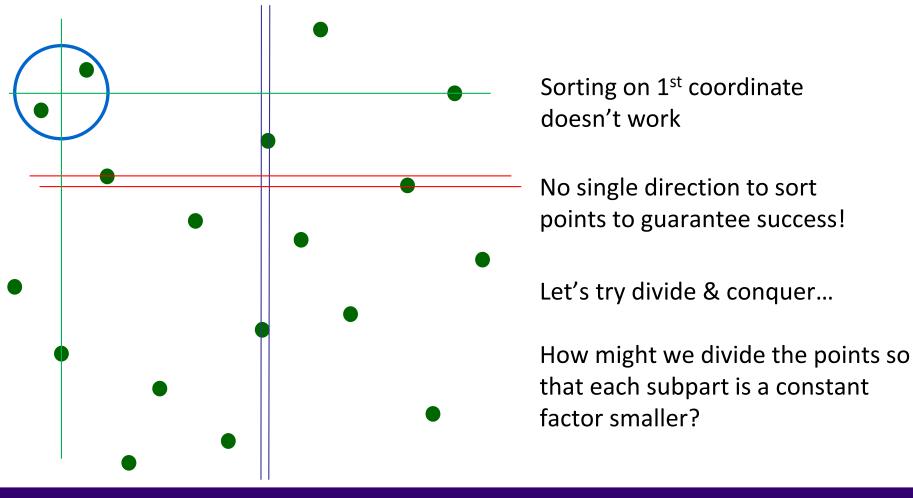
Algorithm:

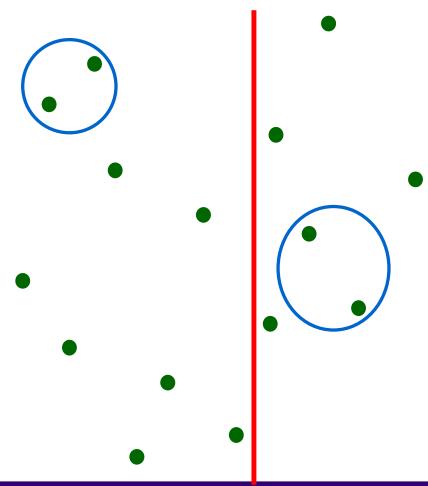
- Sort points so $p_1 \le p_2 \le \cdots \le p_n$
- Find closest adjacent pair p_i , p_{i+1} .

Running time: $O(n \log n)$

What about d = 2?

Closest Pair in 2 Dimensions





How might we divide the points so that each subpart is a constant factor smaller?

Split using median x-coordinate!

• each subpart has size n/2.

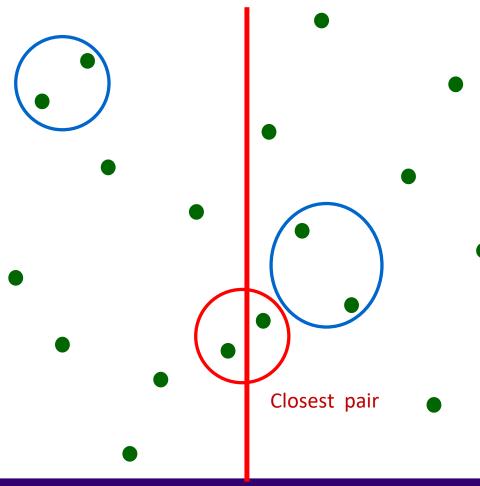
Conquer:

• Solve both size n/2 subproblems recursively

Recombine to get overall answer?

Take the closer of the two answers?

works here but....



How might we divide the points so that each subpart is a constant factor smaller?

Split using median x-coordinate!

• each subpart has size n/2.

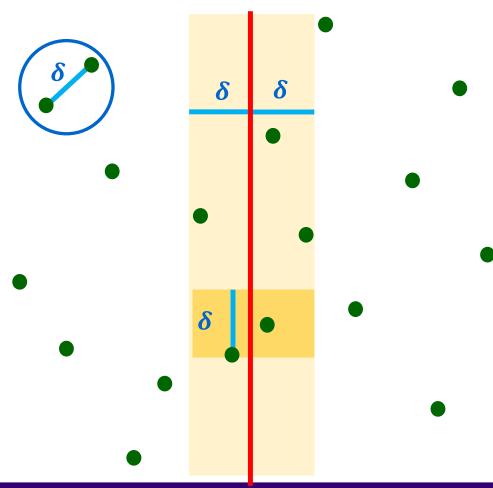
Conquer:

• Solve both size n/2 subproblems recursively

Recombine to get overall answer?

Take the closer of the two answers?

...but not always!



Need to worry about pairs across the split!

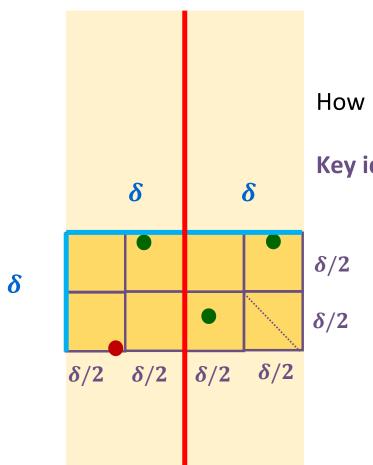
New idea to handle them

- Let δ be the distance of the closest pair in the 2 subparts
- This pair is a candidate
- Only need to check width δ band either side of the median

Within that band ...

• only need to compare each point with the other points in the rectangle of height δ above it.

How many points can that be?



How many points can there be in that δ by 2δ rectangle?

Key idea: We know that no pair on either side is closer than δ apart so there can't be too many!

- Each of the 8 squares of side $\delta/2$ can contain at most 1 point!
 - Because diagonal has length $<\delta$
- So....only need to compare each point with the next 7 points above it to guarantee you'll find a partner closer than δ in the rectangle if there is one!

Fleshing out the algorithm:

Divide:

• At top level we need median x coordinate to split points $O(n \log n)$ total • At next level down we'll need median x coordinate for each side over all calls

• Might as well sort all points by x coordinate up front to get all medians at once!

Conquer: Solve the two sub-problems to get two candidate pairs 2 T(n/2)

Recombine:

- Choose closer candidate pair and let its distance be δ O(1)
- Select $B = \text{all points in band with } x \text{ coordinates within } \delta \text{ of median} \qquad O(n)$
- Sort B by y coordinate May involve repeated work for different calls $O(n \log n)$
- Compare each point in B with next 7 points and update if closer pair found. O(n)

Fleshing out the algorithm: A better version:

<u>Preprocess:</u> Compute sorted list X of points by x coordinate	$O(n \log n)$
 Subparts will be defined by two indices into this list 	
Compute sorted list $m{Y}$ of points by $m{y}$ coordinate	$O(n \log n)$
<u>Divide:</u> Use median in X to get X_L and X_R and filter points of Y to produce sorted sublists Y_L and Y_R	$O(\mathbf{n})$
Conquer: Solve the two sub-problems to get two candidate pairs	2T(n/2)

Recombine:

- Choose closer candidate pair and let its distance be δ 0(1)
- Filter Y to get B = points in band w/x coordinates within δ of median O(n)
- Compare each point in B with next 7 points and update if closer pair found. O(n)

Total runtime = Preprocessing time + Divide and Conquer time

Let T(n) be Divide and Conquer time:

Recurrence:

- $T(n) \le 2 T(n/2) + O(n)$ for $n \ge 3$
- T(2) = 1

Solution: T(n) is $O(n \log n)$.

With preprocessing, total runtime is $O(n \log n)$.

Sometimes two sub-problems aren't enough

More general divide and conquer

- You've broken the problem into a different sub-problems
- Each has size at most n/b
- The cost of break-up and recombining sub-problem solutions is $O(n^k)$
 - "cost at the top level"

Recurrence

- $T(n) = a \cdot T(n/b) + O(n^k)$ for $n \ge b$
- T is constant for inputs < b.
 - For solutions correct up to constant factors no need for exact base case

Solving Divide and Conquer Recurrence

Master Theorem: Suppose that $T(n) = a \cdot T(n/b) + O(n^k)$ for n > b.

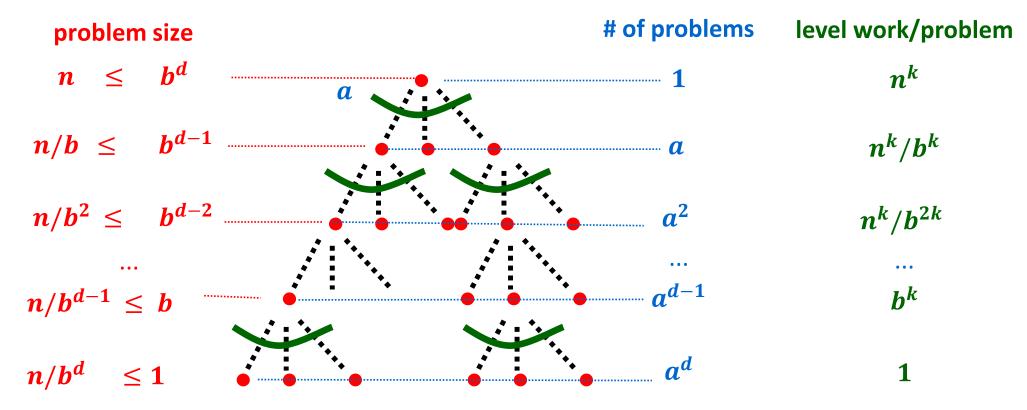
- If $a < b^k$ then T(n) is $O(n^k)$
 - Cost is dominated by work at top level of recursion
- If $a = b^k$ then T(n) is $O(n^k \log n)$
 - Total cost is the same for all $\log_b n$ levels of recursion
- If $a > b^k$ then T(n) is $O(n^{\log_b a})$
 - Note that $\log_b a > k$ in this case
 - Cost is dominated by total work at lowest level of recursion

```
Binary search: a = 1, b = 2, k = 0 so a = b^k: Solution: O(n^0 \log n) = O(\log n)
```

Mergesort: a = 2, b = 2, k = 1 so $a = b^k$: Solution: $O(n^1 \log n) = O(n \log n)$

Proving Master Theorem for $T(n) = a \cdot T(n/b) + c \cdot n^k$

Write $d = \lceil \log_b n \rceil$ so $n \le b^d$



Proving Master Theorem for $T(n) = a \cdot T(n/b) + c \cdot n^k$

Write $d = \lceil \log_b n \rceil$ so $n \le b^d$

# of problems	level work/problem	total work/level
1	n^k	n^k
a	n^k/b^k	$(a/b^k) \cdot n^k$
a^2	n^k/b^{2k}	$\left(a/b^k\right)^2 \cdot n^k$
a^{d-1}	$oldsymbol{b^k}$	
a^d	1	$a^{\log_b n}$

total work

If $a < b^k$ sum of geometric series with biggest term $O(n^k)$

If $a = b^k$ sum of $O(\log n)$ terms each $O(n^k)$

If $a > b^k$ sum of geometric series with biggest term $O(a^{\log_b n})$

Claim: $a^{\log_b n} = n^{\log_b a}$

Proof: Take \log_b of both sides