CSE 421 Introduction to Algorithms

Lecture 8: Divide and Conquer

Algorithm Design Techniques

Divide \& Conquer

- Divide instance into subparts.
- Solve the parts recursively.
- Conquer by combining the answers

To truly fit Divide \& Conquer

- each sub-part should be at most a constant fraction of the size of the original input instance
- e.g. Mergesort, Binary Search, Quicksort (sort of), etc.

Binary search for roots (bisection method)

Given:

- Continuous function f and two points $a<b$ with $f(a) \leq 0$ and $f(b)>0$

Find:

- Approximation within ε of c s.t. $f(c)=0$ and $a<c<b$

Bisection method

Bisection (a, b, ε)

$$
\begin{aligned}
& \text { if }(b-a) \leq \varepsilon \text { then } \\
& \text { return }(a)
\end{aligned}
$$

else \{
$c \leftarrow(a+b) / 2$
if $f(c) \leq 0$ then
return(Bisection(c, b, ε))
else
return(Bisection $(a, c, \varepsilon))$
\}

Time Analysis

At each step we halved the size of the interval

- It started at size $\boldsymbol{b}-\boldsymbol{a}$
- It ended at size $\boldsymbol{\varepsilon}$

So \# of calls to \boldsymbol{f} is $\log _{2}((\boldsymbol{b}-\boldsymbol{a}) / \boldsymbol{\varepsilon})$

Old Favorites

Binary search:

- One subproblem of half size plus one comparison
- Recurrence* for time in terms of \# of comparisons
- $T(n)=T(n / 2)+1$ for $n \geq 2$
- $T(1)=0$
- Solving shows that $\boldsymbol{T}(\boldsymbol{n})=\left\lceil\log _{2} n\right\rceil+1$

Mergesort:

- Two subproblems of half size plus merge cost of $\boldsymbol{n}-1$ comparisons
- Recurrence* for time in terms of \# of comparisons
- $T(n) \leq 2 T(n / 2)+n-1$ for $n \geq 2$
- $T(1)=0$
- Roughly \boldsymbol{n} comparisons at each of $\log _{2} \boldsymbol{n}$ levels of recursion so $\boldsymbol{T}(\boldsymbol{n})$ is roughly $\boldsymbol{n} \log _{2} \boldsymbol{n}$
*We will implicitly assume that every input to $\boldsymbol{T}(\cdot)$ is rounded up to the nearest integer.

Euclidean Closest Pair

Given:

- A sequence of n points p_{1}, \ldots, p_{n} with real coordinates in d dimensions $\left(\mathbb{R}^{d}\right)$

Find:

- A pair of points $\boldsymbol{p}_{i}, \boldsymbol{p}_{\boldsymbol{j}}$ s.t. the Euclidean distance $\boldsymbol{d}\left(\boldsymbol{p}_{\boldsymbol{i}}, \boldsymbol{p}_{\boldsymbol{j}}\right)$ is minimized

What is the first algorithm you can think of?

- Try all $\Theta\left(\boldsymbol{n}^{2}\right)$ possible pairs

Can we do better if dimension $d=1$?

Closest Pair in 1 Dimension

Algorithm:

- Sort points so $\boldsymbol{p}_{1} \leq \boldsymbol{p}_{2} \leq \cdots \leq \boldsymbol{p}_{n}$
- Find closest adjacent pair p_{i}, p_{i+1}.

Running time: $O(\boldsymbol{n} \log \boldsymbol{n})$

What about $d=2$?

Closest Pair in 2 Dimensions

Sorting on $1^{\text {st }}$ coordinate doesn't work

No single direction to sort points to guarantee success!

Let's try divide \& conquer...

How might we divide the points so that each subpart is a constant factor smaller?

Closest Pair in 2 Dimensions: Divide and Conquer

How might we divide the points so that each subpart is a constant factor smaller?

Split using median x-coordinate!

- each subpart has size $n / 2$.
- Conquer:
- Solve both size $n / 2$ subproblems recursively
Recombine to get overall answer?
Take the closer of the two answers?
- works here but....

Closest Pair in 2 Dimensions: Divide and Conquer

How might we divide the points so that each subpart is a constant factor smaller?

Split using median x-coordinate!

- each subpart has size $n / 2$.
- Conquer:
- Solve both size $n / 2$ subproblems recursively
Recombine to get overall answer?
Take the closer of the two answers?
- ...but not always!

Closest Pair in 2 Dimensions: Divide and Conquer

Need to worry about pairs across the split!

New idea to handle them

- Let δ be the distance of the closest pair in the 2 subparts
- This pair is a candidate
- Only need to check width δ band either side of the median
Within that band ...
- only need to compare each point with the other points in the rectangle of height δ above it.
How many points can that be?

Closest Pair in 2 Dimensions: Divide and Conquer

How many points can there be in that δ by 2δ rectangle?
Key idea: We know that no pair on either side is closer than δ apart so there can't be too many!

- Each of the 8 squares of side $\delta / 2$ can contain at most 1 point!
- Because diagonal has length $<\boldsymbol{\delta}$
- So....only need to compare each point with the next 7 points above it to guarantee you'll find a partner closer than δ in the rectangle if there is one!

Closest Pair in 2 Dimensions: Divide and Conquer

Fleshing out the algorithm:

Divide:

- At top level we need median x coordinate to split points
- At next level down we'll need median x coordinate for each side
- Might as well sort all points by x coordinate up front to get all medians at once!

Conquer: Solve the two sub-problems to get two candidate pairs $2 T(n / 2)$

Recombine:

- Choose closer candidate pair and let its distance be δ
- Select $B=$ all points in band with x coordinates within δ of median
- Sort \boldsymbol{B} by \boldsymbol{y} coordinate May involve repeated work for different calls $O(\boldsymbol{n} \log \boldsymbol{n})$
- Compare each point in B with next 7 points and update if closer pair found. O (n)

Closest Pair in 2 Dimensions: Divide and Conquer

Fleshing out the algorithm: A better version:
Preprocess: Compute sorted list X of points by x coordinate

- Subparts will be defined by two indices into this list

Compute sorted list Y of points by y coordinate
$O(\boldsymbol{n} \log \boldsymbol{n})$
Divide: Use median in X to get X_{L} and X_{R} and filter points of Y to produce
$O(\boldsymbol{n})$ sorted sublists Y_{L} and Y_{R}

Conquer: Solve the two sub-problems to get two candidate pairs $2 \boldsymbol{T}(n / 2)$

Recombine:

- Choose closer candidate pair and let its distance be $\boldsymbol{\delta}$
- Filter \boldsymbol{Y} to get $\boldsymbol{B}=$ points in band w/ \boldsymbol{x} coordinates within δ of median $O(\boldsymbol{n})$
- Compare each point in B with next 7 points and update if closer pair found. $O(\boldsymbol{n})$

Closest Pair in 2 Dimensions: Divide and Conquer

Total runtime $=$ Preprocessing time + Divide and Conquer time
Let $\boldsymbol{T}(\boldsymbol{n})$ be Divide and Conquer time:
Recurrence:
$0 T(n) \leq 2 T(n / 2)+O(n)$ for $n \geq 3$

- $T(2)=1$

Solution: $\boldsymbol{T}(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$.
With preprocessing, total runtime is $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$.

Sometimes two sub-problems aren't enough

More general divide and conquer

- You've broken the problem into a different sub-problems
- Each has size at most n / b
- The cost of break-up and recombining sub-problem solutions is $O\left(n^{k}\right)$
- "cost at the top level"

Recurrence

- $\boldsymbol{T}(\boldsymbol{n})=\boldsymbol{a} \cdot \boldsymbol{T}(\boldsymbol{n} / \boldsymbol{b})+O\left(\boldsymbol{n}^{k}\right)$ for $\boldsymbol{n} \geq \boldsymbol{b}$
- T is constant for inputs $<b$.
- For solutions correct up to constant factors no need for exact base case

Solving Divide and Conquer Recurrence

Master Theorem: Suppose that $T(n)=\boldsymbol{a} \cdot \boldsymbol{T}(\boldsymbol{n} / \boldsymbol{b}) \pm O\left(\boldsymbol{n}^{k}\right)$ for $\boldsymbol{n}>\boldsymbol{b}$.

- If $a<b^{k}$ then $\boldsymbol{T}(\boldsymbol{n})$ is $O\left(\boldsymbol{n}^{k}\right)$
- Cost is dominated by work at top level of recursion
- If $\boldsymbol{a}=\boldsymbol{b}^{k}$ then $\boldsymbol{T}(\boldsymbol{n})$ is $O\left(\boldsymbol{n}^{k} \log \boldsymbol{n}\right)$
- Total cost is the same for all $\log _{b} \boldsymbol{n}$ levels of recursion
- If $\boldsymbol{a}>\boldsymbol{b}^{k}$ then $\boldsymbol{T}(\boldsymbol{n})$ is $O\left(\boldsymbol{n}^{\log _{b} a}\right)$
- Note that $\log _{b} a>\boldsymbol{k}$ in this case
- Cost is dominated by total work at lowest level of recursion

Binary search: $a=\mathbf{1}, \boldsymbol{b}=\mathbf{2}, \boldsymbol{k}=\mathbf{0}$ so $a=\boldsymbol{b}^{\boldsymbol{k}}$: Solution: $O\left(\boldsymbol{n}^{0} \log n\right)=O(\log n)$
Mergesort: $\boldsymbol{a}=\mathbf{2}, \boldsymbol{b}=\mathbf{2}, \boldsymbol{k}=1$ so $\boldsymbol{a}=\boldsymbol{b}^{\boldsymbol{k}}$: Solution: $O\left(\boldsymbol{n}^{1} \log \boldsymbol{n}\right)=O(\boldsymbol{n} \log \boldsymbol{n})$

Proving Master Theorem for $T(n)=a \cdot T(n / b)+c \cdot n^{k}$

Write $d=\left\lceil\log _{b} n\right\rceil$ so $n \leq b^{d}$
problem size
$\begin{aligned} n & \leq b^{d} \\ n / b & \leq b^{d-1}\end{aligned}$
$n / b^{2} \leq b^{d-2}$
$n / b^{d-1} \leq b$
$n / b^{d} \quad \leq 1$
\# of problems
1
a

level work/problem

$$
\begin{gathered}
n^{k} \\
n^{k} / b^{k} \\
n^{k} / b^{2 k} \\
\ldots \\
b^{k} \\
1
\end{gathered}
$$

Proving Master Theorem for $\boldsymbol{T}(\boldsymbol{n})=\boldsymbol{a} \cdot \boldsymbol{T}(\boldsymbol{n} / b)+\boldsymbol{c} \cdot \boldsymbol{n}^{k}$

Write $d=\left\lceil\log _{b} n\right\rceil$ so $n \leq b^{d}$
\# of problems level work/problem total work/level

1	n^{k}
a	n^{k} / b^{k}
a^{2}	$n^{k} / b^{2 k}$
\ldots	\ldots
a^{d-1}	b^{k}
a^{d}	1

total work

If $a<b^{k}$ sum of geometric series with biggest term $O\left(n^{k}\right)$

If $\boldsymbol{a}=\boldsymbol{b}^{\boldsymbol{k}}$ sum of $O(\log \boldsymbol{n})$ terms each $O\left(\boldsymbol{n}^{k}\right)$

If $a>b^{k}$ sum of geometric series with biggest term $O\left(\boldsymbol{a}^{\log _{b} n}\right)$ Claim: $a^{\log _{b} n}=n^{\log _{b} a}$
Proof: Take $\log _{b}$ of both sides

