Lecture 8: Divide and Conquer
Algorithm Design Techniques

Divide & Conquer

• Divide instance into subparts.
• Solve the parts recursively.
• Conquer by combining the answers

To truly fit Divide & Conquer

• each sub-part should be at most a constant fraction of the size of the original input instance
 • e.g. Mergesort, Binary Search, Quicksort (sort of), etc.
Binary search for roots (bisection method)

Given:
• Continuous function \(f \) and two points \(a < b \) with \(f(a) \leq 0 \) and \(f(b) > 0 \)

Find:
• Approximation within \(\epsilon \) of \(c \) s.t. \(f(c) = 0 \) and \(a < c < b \)
Bisection method

Bisection(a, b, ε)

if $(b - a) \leq \varepsilon$ then
 return(a)
else {
 $c \leftarrow (a + b)/2$
 if $f(c) \leq 0$ then
 return(Bisection(c, b, ε))
 else
 return(Bisection(a, c, ε))
}
Time Analysis

At each step we halved the size of the interval

- It started at size $b - a$
- It ended at size ε

So # of calls to f is $\log_2 \left(\frac{(b - a)}{\varepsilon} \right)$

of bits of precision
Old Favorites

Binary search:

- One subproblem of half size plus one comparison
- Recurrence* for time in terms of # of comparisons
 - $T(n) = T(n/2) + 1$ for $n \geq 2$
 - $T(1) = 0$
- Solving shows that $T(n) = \lceil \log_2 n \rceil + 1$

Mergesort:

- Two subproblems of half size plus merge cost of $n - 1$ comparisons
- Recurrence* for time in terms of # of comparisons
 - $T(n) \leq 2T(n/2) + n - 1$ for $n \geq 2$
 - $T(1) = 0$
- Roughly n comparisons at each of $\log_2 n$ levels of recursion so $T(n)$ is roughly $n \log_2 n$

*We will implicitly assume that every input to $T(\cdot)$ is rounded up to the nearest integer.
Euclidean Closest Pair

Given:
- A sequence of \(n \) points \(p_1, \ldots, p_n \) with real coordinates in \(d \) dimensions (\(\mathbb{R}^d \))

Find:
- A pair of points \(p_i, p_j \) s.t. the Euclidean distance \(d(p_i, p_j) \) is minimized

What is the first algorithm you can think of?
- Try all \(\Theta(n^2) \) possible pairs

Can we do better if dimension \(d = 1 \)?
Closest Pair in 1 Dimension

Algorithm:
- Sort points so $p_1 \leq p_2 \leq \cdots \leq p_n$
- Find closest adjacent pair p_i, p_{i+1}.

Running time: $O(n \log n)$

What about $d = 2$?
Closest Pair in 2 Dimensions

No single direction to sort points to guarantee success!

Let’s try divide & conquer...

How might we divide the points so that each subpart is a constant factor smaller?

Sorting on 1st coordinate doesn’t work
Closest Pair in 2 Dimensions: Divide and Conquer

How might we divide the points so that each subpart is a constant factor smaller?

Split using median x-coordinate!
- each subpart has size $n/2$.

Conquer:
- Solve both size $n/2$ subproblems recursively
Recombine to get overall answer?

Take the closer of the two answers?
- works here but....
Closest Pair in 2 Dimensions: Divide and Conquer

How might we divide the points so that each subpart is a constant factor smaller?

Split using median \(x \)-coordinate!
- each subpart has size \(n/2 \).

Conquer:
- Solve both size \(n/2 \) subproblems recursively
Recombine to get overall answer?

Take the closer of the two answers?
- ...but not always!
Closest Pair in 2 Dimensions: Divide and Conquer

Need to worry about pairs across the split!

New idea to handle them

• Let δ be the distance of the closest pair in the 2 subparts
• This pair is a candidate
• Only need to check width δ band either side of the median

Within that band ...

• only need to compare each point with the other points in the rectangle of height δ above it.

How many points can that be?
How many points can there be in that δ by 2δ rectangle?

Key idea: We know that no pair on either side is closer than δ apart so there can’t be too many!

- Each of the 8 squares of side $\delta/2$ can contain at most 1 point!
 - Because diagonal has length $< \delta$
- So....only need to compare each point with the next 7 points above it to guarantee you’ll find a partner closer than δ in the rectangle if there is one!
Closest Pair in 2 Dimensions: Divide and Conquer

Fleshing out the algorithm:

Divide:
• At top level we need median x coordinate to split points
• At next level down we’ll need median x coordinate for each side
• Might as well sort all points by x coordinate up front to get all medians at once!

Conquer: Solve the two sub-problems to get two candidate pairs

Recombine:
• Choose closer candidate pair and let its distance be δ
• Select $B = \text{all points in band with } x \text{ coordinates within } \delta \text{ of median}$
• Sort B by y coordinate \(O(n \log n) \text{ total over all calls} \)
• Compare each point in B with next 7 points and update if closer pair found. \(O(n) \)
Closest Pair in 2 Dimensions: Divide and Conquer

Fleshing out the algorithm: A better version:

Preprocess: Compute sorted list X of points by x coordinate
 • Subparts will be defined by two indices into this list
 Compute sorted list Y of points by y coordinate

Divide: Use median in X to get X_L and X_R and filter points of Y to produce
 sorted sublists Y_L and Y_R

Conquer: Solve the two sub-problems to get two candidate pairs

Recombine:
 • Choose closer candidate pair and let its distance be δ
 • Filter Y to get $B =$ points in band w/ x coordinates within δ of median
 • Compare each point in B with next 7 points and update if closer pair found.
Closest Pair in 2 Dimensions: Divide and Conquer

Total runtime = Preprocessing time + Divide and Conquer time

Let \(T(n) \) be Divide and Conquer time:

Recurrence:
- \(T(n) \leq 2T(n/2) + O(n) \) for \(n \geq 3 \)
- \(T(2) = 1 \)

Solution: \(T(n) \) is \(O(n \log n) \).

With preprocessing, total runtime is \(O(n \log n) \).
Sometimes two sub-problems aren’t enough

More general divide and conquer

• You’ve broken the problem into \textit{a} different sub-problems
• Each has size at most \(n/b \)
• The cost of break-up and recombining sub-problem solutions is \(O(n^k) \)
 • “cost at the top level”

Recurrence

• \(T(n) = a \cdot T(n/b) + O(n^k) \) for \(n \geq b \)
• \(T \) is constant for inputs \(< b \).
 • For solutions correct up to constant factors no need for exact base case
Solving Divide and Conquer Recurrence

Master Theorem: Suppose that $T(n) = a \cdot T(n/b) + O(n^k)$ for $n > b$.

- If $a < b^k$ then $T(n)$ is $O(n^k)$
 - Cost is dominated by work at top level of recursion
- If $a = b^k$ then $T(n)$ is $O(n^k \log n)$
 - Total cost is the same for all $\log_b n$ levels of recursion
- If $a > b^k$ then $T(n)$ is $O(n^{\log_b a})$
 - Note that $\log_b a > k$ in this case
 - Cost is dominated by total work at lowest level of recursion

Binary search: $a = 1, b = 2, k = 0$ so $a = b^k$: Solution: $O(n^0 \log n) = O(\log n)$

Mergesort: $a = 2, b = 2, k = 1$ so $a = b^k$: Solution: $O(n^1 \log n) = O(n \log n)$
Proving Master Theorem for $T(n) = a \cdot T(n/b) + c \cdot n^k$

Write $d = \lceil \log_b n \rceil$ so $n \leq b^d$

<table>
<thead>
<tr>
<th>problem size</th>
<th># of problems</th>
<th>level work/problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n \leq b^d$</td>
<td>1</td>
<td>n^k</td>
</tr>
<tr>
<td>$n/b \leq b^{d-1}$</td>
<td>a</td>
<td>n^k/b^k</td>
</tr>
<tr>
<td>$n/b^2 \leq b^{d-2}$</td>
<td>a^2</td>
<td>n^k/b^{2k}</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>$n/b^{d-1} \leq b$</td>
<td>a^{d-1}</td>
<td>b^k</td>
</tr>
<tr>
<td>$n/b^d \leq 1$</td>
<td>a^d</td>
<td>1</td>
</tr>
</tbody>
</table>
Proving Master Theorem for $T(n) = a \cdot T(n/b) + c \cdot n^k$

Write $d = \lfloor \log_b n \rfloor$ so $n \leq b^d$

<table>
<thead>
<tr>
<th># of problems</th>
<th>level work/problem</th>
<th>total work/level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>n^k</td>
<td>n^k</td>
</tr>
<tr>
<td>a</td>
<td>n^k/b^k</td>
<td>$(a/b^k) \cdot n^k$</td>
</tr>
<tr>
<td>a^2</td>
<td>n^k/b^{2k}</td>
<td>$(a/b^k)^2 \cdot n^k$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>a^{d-1}</td>
<td>b^k</td>
<td>...</td>
</tr>
<tr>
<td>a^d</td>
<td>1</td>
<td>$a^{\log_b n}$</td>
</tr>
</tbody>
</table>

- **total work**
 - If $a < b^k$ sum of geometric series with biggest term $O(n^k)$
 - If $a = b^k$ sum of $O(\log n)$ terms each $O(n^k)$
 - If $a > b^k$ sum of geometric series with biggest term $O(a^{\log_b n})$

Claim: $a^{\log_b n} = n^{\log_b a}$

Proof: Take \log_b of both sides