
CSE 421

Introduction to Algorithms

Lecture 7: Minimum Spanning Trees

Prim, Kruskal and more

1

Greedy Analysis Strategies

Greedy algorithm stays ahead: Show that after each step of the greedy

algorithm, its solution is at least as good as any other algorithm's

Structural: Discover a simple "structural" bound asserting that every possible

solution must have a certain value. Then show that your algorithm always

achieves this bound.

Exchange argument: Gradually transform any solution to the one found by
the greedy algorithm without hurting its quality.

2

3

Minimum Spanning Trees (Forests)

Given: an undirected graph � = (�, �) with each edge 	 having a weight
()

Find: a subgraph � of � of minimum total weight s.t.

every pair of vertices connected in � are also connected in �

If � is connected then � is a tree

• Otherwise, � is still a forest

4

Weighted Undirected Graph

2

7

-1

4
3

4

5

1
3

5
8

6

9
4

5
7

9

8

5

Greedy Algorithm

Prim’s Algorithm:

• start at a vertex �

• add the cheapest edge adjacent to �

• repeatedly add the cheapest edge that joins the vertices

explored so far to the rest of the graph

Exactly like Dijsktra’s Algorithm but with a different objective

6

Dijsktra’s Algorithm

Dijkstra(�,
,�)

 ← {�}

�[�] ← �

while �� {

among all edges 	 = (�, �) s.t. �� and �� select* one with the minimum value of �[�] +
()
 ← ∪ �

�[�] ←� � +
 	

��	�[�]←�

}

*For each �� maintain �’ � = minimum value of �[�] +
()
over all vertices �� s.t. 	 = (�, �) is in �

7

Prim’s Algorithm

Prim(�,
,�)

 ← {�}

�[�] ← �

while �� {

among all edges 	 = (�, �) s.t. �� and �� select* one with the minimum value of
()
 ← ∪ �

�[�] ←� � +
 	

��	�[�]←�

}

*For each �� maintain ����� � = minimum value of
()
over all vertices �� s.t. 	 = (�, �) is in �

8

Second Greedy Algorithm

Kruskal’s Algorithm:

• Start with the vertices and no edges

• Repeatedly add the cheapest edge that joins two different components.

• i.e. cheapest edge that doesn’t create a cycle

Proving Greedy MST Algorithms Correct

Instead of specialized proofs for each one we’ll have one
unified argument ...

9

10

Cuts

Defn: Given a graph � = (�, �), a cut of � is a partition of � into two non-empty

pieces, and � ∖ .

We write this cut as , � ∖ .

Defn: Edge 	 crosses cut , � ∖ iff one endpoint of 	 is in
and the other is in � ∖

Defn: Given a graph � = (�, �), and a subgraph �′ of � we say that a cut

, � ∖ respects �′ iff no edge of �′ crosses , � ∖

11

A cut respecting a subgraph

12

Another cut respecting the subgraph

13

Generic Greedy MST Algorithms and Safe Edges

Greedy algorithms for MST build up the tree/forest edge-by-edge as follows:

� ← ∅

while (� isn’t spanning)

choose* some “best” edge 	 (that won’t create a cycle)

� ← � ∪ {	}

Defn: An edge 	 of � is called safe for �
iff there is some cut , � ∖ that respects �

s.t 	 is a cheapest edge crossing , � ∖

Theorem: Any greedy algorithm that always chooses* an edge 	 that is safe for �
correctly computes an MST

14

Greedy algorithms: Choose safe edges that don’t create cycles

Prim’s Algorithm:

• Always chooses cheapest edge from current tree to rest of the graph

• This is cheapest edge across a cut that has all the vertices of current tree on one
side.

15

Prim’s Algorithm

2

7

-1

4
3

4

5

1
3

5
8

6

9
4

5
7

9

8

safe

16

Greedy algorithms: Choose safe edges that don’t create cycles

Kruskal’s Algorithm:

• Always choose cheapest edge connecting two pieces of the graph that aren’t yet

connected

• This is the cheapest edge across any cut that has those two pieces on different

sides and doesn’t split any other current pieces (respects the cut).

17

Kruskal’s Algorithm

2

7

-1

4
3

4

5

1
3

5
8

6

9
4

5
7

9

8

safe

18

Kruskal’s Algorithm

2

7

-1

4
3

4

5

1
3

5
8

6

9
4

5
7

9

8

safe

19

Kruskal’s Algorithm

2

7

-1

4
3

4

5

1
3

5
8

6

9
4

5
7

9

8

20

Generic Greedy MST Algorithms and Safe Edges

Defn: An edge 	 of � is called safe for �
iff there is some cut , � ∖ that respects �

s.t 	 is a cheapest edge crossing , � ∖

Theorem: Any greedy algorithm that always chooses* an edge 	 that is safe for �
correctly computes an MST

Proof: We prove via induction and an exchange argument that at every step,

the subgraph � is contained in some MST of �.

Base Case: � = ∅. This is trivially true since ∅ is contained in every set.

IH: Suppose that � is contained in some MST of �.

IS: We need to show that if 	 is safe for � then � ∪ {	} is contained

in an MST of �.

� ∖

IS: 	 is a safe edge for � so 	 must be a cheapest edge crossing some cut
(, � ∖) respecting �

By IH, � is contained in an MST. If this MST contains 	 = (�, �) we’re done.

Otherwise, this MST must contain a path from � to �.

Proof of Lemma: An Exchange Argument

21All the same points are connected by the new tree

	
� �

Edges of �

Edges added to

� to make MST

IS: 	 is a safe edge for � so 	 must be a cheapest edge crossing some cut
(, � ∖) respecting �

By IH, � is contained in an MST. If this MST contains 	 = (�, �) we’re done.

Otherwise, this MST must contain a path from � to �.

Proof of Lemma: An Exchange Argument

22

	
� �

All the same points are connected by the new tree

 � ∖ Edges of �

Edges added to

� to make MST

This must contain some

edge ! crossing the cut.

!

Since 	 was cheapest

 	 ≤
(!)

Exchange 	 for ! to get a

new spanning subgraph

that is at least as cheap

and contains � ∪ {	}.

23

Kruskal’s Algorithm: Implementation & Analysis

• First sort the edges by weight #(� log �)

• Go through edges from smallest to largest

• if endpoints of edge 	 are currently in different components

• then add to the graph

• else skip

Union-Find data structure handles test for different components

• Total cost of union find: #(� ⋅ (())) where () ≪ log �

Overall #(� log �) which is #(� log))

24

Union-Find disjoint sets data structure

Maintaining components

• start with) different components

• one per vertex

• find components of the two endpoints of 	

• +� finds

• union two components when edge connecting them is added

•) − - unions

25

Prim’s Algorithm with Priority Queues

• For each vertex � not in tree maintain current cheapest edge

from tree to �

• Store � in priority queue with key = weight of this edge

• Operations:

•) − - insertions (each vertex added once)

•) − - delete-mins (each vertex deleted once)

• pick the vertex of smallest key, remove it from the p.q. and add its

edge to the graph

• < � decrease-keys (each edge updates one vertex)

26

Prim’s Algorithm with Priority Queues

Priority queue implementations: same complexity as Dijkstra

• Array

• insert #(-), delete-min #()), decrease-key #(-)

• total #() +)+ + �) = #()2)

• Heap

• insert, delete-min, decrease-key all #(log))

• total #(� log))

• �-Heap (� = �/))

• insert, decrease-key #(log�/)))

• delete-min #((�/))log�/)))

• total #(� log�/)))

Worse if � = 1()+)

Better for all values of �

�

) − -

27

Boruvka’s Algorithm (1927)

A bit like Kruskal’s Algorithm

• Start with) components consisting of a single vertex each

• At each step:

• Each component chooses to add its cheapest outgoing edge

• Two components may choose to add the same edge

• Need to add a tiebreaker on edge weights (no equal weights)

to avoid cycles

Useful for parallel algorithms since components may be processed

(almost) independently

28

Boruvka

2.1

7.1

-1

4.2
3.2

4.1

5.1

1.1
3.1

5.1
8.1

6

9.1
4.3

5.2
7.2

9.2

8.2

29

Boruvka

2.1

7.1

-1

4.2
3.2

4.1

5.1

1.1
3.1

5.1
8.1

6

9.1
4.3

5.2
7.2

9.2

8.2

30

Boruvka

2.1

7.1

-1

4.2
3.2

4.1

5.1

1.1
3.1

5.1
8.1

6

9.1
4.3

5.2
7.2

9.2

8.2

31

Many other minimum spanning tree algorithms, most of them greedy

Cheriton & Tarjan

• Use a queue of components

• Component at head chooses cheapest outgoing edge

• New merged component goes to tail of the queue.

• #(� loglog)) time

Chazelle

• #(� ⋅ (� ⋅ log (((�))) time

• Incredibly hairy algorithm

Karger, Klein & Tarjan

• #(� +)) time randomized algorithm that works most of the time

Applications of Minimum Spanning Tree Algorithms

MST is a fundamental problem with diverse applications

• Network design

• telephone, electrical, hydraulic, TV cable, computer, road

• Approximation algorithms

• travelling salesperson problem, Steiner tree

• Indirect applications

• max bottleneck paths

• LDPC codes for error correction

• image registration with Renyi entropy

• reducing data storage in sequencing amino acids

• model locality of particle interactions in turbulent fluid flows

• autoconfig protocol for Ethernet bridging to avoid network cycles

• Clustering

32

33

Applications of Minimum Spanning Tree Algorithms

Minimum cost network design:

• Build a network to connect all locations {�-, … , �)}

• Cost of connecting �3 to �4 is
 �3, �4 > 0.

• Choose a collection of links to create that will be as cheap as possible

• Any minimum cost solution is an MST

• If there is a solution containing a cycle then we can remove any

edge and get a cheaper solution

34

Applications of Minimum Spanning Tree Algorithms

Maximum Spacing Clustering:
Given:

• Collection 8 of) points {�-, … , �)}

• Distance measure �(�3, �4) satisfying

• Zero base: � �3, �4 = �

• Nonnegativity: � �3, �4 > � for 3 ≠ 4

• Symmetry: � �3, �4 = �(�4, �3)

• Positive integer : ≤)

Find: a :-clustering, i.e. partition of 8 into : clusters ;-, … , ;:, s.t.

the spacing between the clusters is as large possible where

spacing = min{�(�3, �4): �3 and �4 are in different clusters}

35

Greedy Algorithm for Maximum Spacing Clustering

• Start with) clusters each consisting of a single point

• Repeat until only : clusters remain

• find the closest pair of points in different clusters under distance �

• merge their clusters

Gets the same components as Kruskal’s Algorithm does if we stop early!

• The sequence of closest pairs is exactly the MST

• Alternatively...

• we could run any MST algorithm once and for any : we could get the

maximum spacing :-clustering by deleting the : − - most expensive

edges in the MST

• Removing the : − - most expensive edges from an MST yields : components

;-, … , ;: and the spacing for them is precisely the cost �∗ of the : − -st most

expensive edge in the tree

• Consider any other :-clustering ;-
= , ;+

= , … , ;:
=

• There is some pair of points �3, �4 s.t. �3, �4 are in some cluster ;� but �3, �4

are in different clusters ;�
= and ;>

=

• Since both are in ;�, points �3 and �4 are joined by a path with each hop of

distance at most �∗

• This path must have some adjacent pair in different clusters of ;-
= , ;+

= , … , ;:
=

so the spacing of ;-
= , ;+

= , … , ;:
= must be at most �∗

;>
=;�

=

;�

�4�3

36

Proof that this works

≤ �∗ ≤ �∗≤ �∗

