CSE 421
Introduction to Algorithms

Lecture 6: More Greedy Algorithms

Last time: Greedy Algorithms

Hard to define exactly but can give general properties
 Solution is built in small steps

e Decisions on how to build the solution are made to
maximize some criterion without looking to the future

* Want the ‘best’ current partial solution as if the current step were the
last step

May be more than one greedy algorithm using different criteria to
solve a given problem
* Not obvious which criteria will actually work

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Greedy Analysis Strategies

Greedy algorithm stays ahead: Show that after each step of the greedy
algorithm, its solution is at least as good as any other algorithm's
* Example: Interval Scheduling analysis

Structural: Discover a simple "structural” bound asserting that every possible
solution must have a certain value. Then show that your algorithm always
achieves this bound.

* Example: Interval Partitioning analysis

Exchange argument: Gradually transform any solution to the one found by
the greedy algorithm without hurting its quality.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Scheduling to Minimize Lateness

Scheduling to minimize lateness:

* Single resource as in interval scheduling but, instead of start and finish times,
request i has

* Time requirement t; which must be scheduled in a contiguous block
* Target deadline d; by which time the request would like to be finished
* Overall start time s for all jobs

Requests are scheduled by the algorithm into time intervals [s;, fi] s.t. t; = f; — s;
* Lateness of schedule for request i is
* If f; > d;thenrequestiislateby L, = f,— d;; otherwise its lateness L, = 0

* Maximum lateness L = max; Li

Goal: Find a schedule for all requests (values of s; and f; for each request i) to
minimize the maximum lateness, L.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Scheduling to Minimizing Lateness

* Example: ATEETE TS
slzlalalalz
6 8 9 9 14 15

lateness = 2 lateness =0 max lateness = 6

| | |
d3:9 d2:8 d6:15 dl d5:14 d4:9
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

]
(o)}

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Minimizing Lateness: Greedy Algorithms

Greedy template: Consider jobs in some order.

[Shortest processing time first] Consider jobs in ascending order of
processing time L.

[Earliest deadline first] Consider jobs in ascending order of deadline d;.

[Smallest slack] Consider jobs in ascending order of slack d; — ..

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Minimizing Lateness: Greedy Algorithms

Greedy template: Consider jobs in some order.

[Shortest processing time first] Consider jobs in ascending order of
processing time L.

Will schedule 1 (length 1) before 2 (length 10).
1 10 counterexample 2 can only be scheduled at time 1
W 00 10 1 will finish at time 11 >10. Lateness 1.

> Lateness O possible If 1 goes last.

[Smallest slack] Consider jobs in ascending order of slack d; — ..

Will schedule 2 (slack 0) before 1 (slack 1).
1 1 10 1 can only be scheduled at time 10
> 10 counterexample 1 will finish at time 11 >10. Lateness 9.

Lateness 1 possible if 1 goes first.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Minimizing Lateness: Greedy Algorithms

Greedy template: Consider jobs in some order.

[Earliest deadline first] Consider jobs in ascending order of deadline dj.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Greedy Algorithm: Earliest Deadline First

Consider requests in increasing order of deadlines

Schedule the request with the earliest deadline as soon as the resource is available

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Minimizing Lateness: Greedy EDF Algorithm

e Greedy Earliest Deadline First (EDF).

Sort deadlines in increasing order (dqy <d, <---<d,)
f<s
fori< 1ton{

s; < f

fiesitt

f<Ti

More on Monday!

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Scheduling to Minimizing Lateness

* Example: 1]2]3|4|5]6]
alalalalale
6 8 9 9 14 15

lateness = 2 lateness =0 max lateness = 6

| | |
Original Schedule d3=9 d,=8 d, =15 d, =6 ds = 14 d,=9
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

max lateness = 1

|
EDF SChedUIe d1:6 d2:8 d3: 9 d4: 9 d5: 14 d6: 15
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Proof for Greedy EDF Algorithm: Exchange Argument

Show that if there is another schedule O (think optimal schedule)

then we can gradually change O so that...
* at each step the maximum lateness in O never gets worse

* it eventually becomes the same cost as A

This means that A is at least as good as O, so A is also optimal!

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Minimizing Lateness: No Idle Time

Observation: There exists an optimal schedule with no idle time

At least as good d

Observation: The greedy EDF schedule has no idle time.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

1

1

Minimizing Lateness: Inversions

Defn: An inversion in schedule S is a pair of jobs i and j
such that d; < d; but j is scheduled before i.

d d]- inversion
D e —

Observation: Greedy EDF schedule has no inversions.

i

Observation: If schedule § (with no idle time) has an inversion
it has two adjacent jobs that are inverted

* Any job in between would be inverted w.r.t. one of the two ends

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Minimizing Lateness: Inversions

Defn: An inversion in schedule S is a pair of jobs i and j
such that d; < d; but j is scheduled before i.

d, d

inversion

/ fi
vetore oo | I I N

after swap [I N
fi f;

i

Claim: Swapping two adjacent, inverted jobs
* reduces the # of inversions by 1
* does not increase the max lateness.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Minimizing Lateness: Inversions

Defn: An inversion in schedule S is a pair of jobs i and j
such that d; < d; but j is scheduled before i.

d, d,
A f] fi

vefore swap (R T

after swap [I
fi f
new lateness L]’-]

old lateness L;

Claim: Maximum lateness does not increase

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Optimal schedules and inversions

Claim: There is an optimal schedule with no idle time and no inversions

Proof:
By previous argument there is an optimal schedule O with no idle time

If O has an inversion then it has an adjacent pair of requests in its schedule
that are inverted and can be swapped without increasing lateness

.. we just need to show one more claim that eventually this swapping stops

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Optimal schedules and inversions

Claim: Eventually these swaps will produce an optimal schedule with no inversions.

Proof:
Each swap decreases the # of inversions by 1

There are a bounded # of inversions possible in the worst case
* at most n(n — 1)/2 but we only care that this is finite.

The # of inversions can’t be negative so this must stop. =®

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Idleness and Inversions are the only issue

Claim: All schedules with no inversions and no idle time have the same maximum
lateness.

Proof:
Schedules can differ only in how they order requests with equal deadlines

Consider all requests having some common deadline d.

* Maximum lateness of these jobs is based only on finish time of the last one ...
and the set of these requests occupies the same time segment in both schedules.

= The last of these requests finishes at the same time in any such schedule. =

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Earliest Deadline First is optimal

We know that
* There is an optimal schedule with no idle time or inversions
 All schedules with no idle time or inversions have the same maximum lateness
* EDF produces a schedule with no idle time or inversions

So ...
* EDF produces an optimal schedule =«

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Greedy Analysis Strategies

Greedy algorithm stays ahead: Show that after each step of the greedy
algorithm, its solution is at least as good as any other algorithm's

Structural: Discover a simple "structural” bound asserting that every possible
solution must have a certain value. Then show that your algorithm always
achieves this bound.

Exchange argument: Gradually transform any solution to the one found by
the greedy algorithm without hurting its quality.

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Single-source shortest paths

Given: an (un)directed graph ¢ = (V, E) with each edge e
having a non-negative weight w(e) and a vertex s

Find: (length of) shortest paths from s to each vertex in G

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

A Greedy Algorithm

Dijkstra’s Algorithm:
* Maintain a set S of vertices whose shortest paths are known
* initially S = {s}
* Maintaining current best lengths of paths that only go through S to
each of the vertices in G
* path-lengths to elements of S will be right, to V' \ $ they might
not be right
» Repeatedly add vertex v to S that has the shortest path-length of
any vertexinV\ §
e update path lengths based on new paths through v

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Dijsktra’s Algorithm

Dijkstra(G,w,s)
S « {s}
d[s] <0
while S#V {

among all edges e = (u, V) s.t. v¢S and u<S select* one with the minimum value of d[u| + w(e)
S« SU{v}

d[v] «<d[u] + w(e)
pred|v]«u
}

*For each v¢S maintain d’[v]| = minimum value of d[u| + w(e)
over all verticesueSs.t.e = (w,v)isin G

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Dijkstra’s Algorithm

, @ 4 Add to S

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Dijkstra’s Algorithm

2 @ 4 Update distances

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Dijkstra’s Algorithm

Addto S

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Dijkstra’s Algorithm

Update distances

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Dijkstra’s Algorithm

@ Add to S

Dijkstra’s Algorithm

7
@ A3 Update distances

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Dijkstra’s Algorithm

1)
S ¥ ®

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Dijkstra’s Algorithm

7
/ .
AddtoS (9) i \53
/ (%5

Dijkstra’s Algorithm

7 /
. 1
Update distances @ X /3 (%x)

Dijkstra’s Algorithm

Addto S

Dijkstra’s Algorithm

Update
distances

Dijkstra’s Algorithm

Addto S

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Update
distances

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Update
distances

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Dijkstra’s Algorithm Correctness

Suppose that all distances to vertices in S are correct
and v has smallest current value d'[v]inV \ S

= d'[v] = length of shortest path from s to v with only last edge leaving S

Suppose some other path P to v.
Let x = 15t vertex on this path notin §

Since v was smallest, d’[v] < d’[x]

xX-v path length>0
= length of P is at least d’[V]

Therefore adding v to S maintains that all distances inside S are correct

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Dijkstra’s Algorithm

* Algorithm also produces a tree of shortest paths to v
following the inverse of pred links

* From v follow its ancestors in the tree back to s reversing edges
along the path

* If all you care about is the shortest path from s to v
simply stop the algorithm when v is added to §

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Dijsktra’s Algorithm

Dijkstra(G,w,s)
S « {s}
d[s] <0
while S#V {

among all edges e = (u, V) s.t. v¢S and u<S select* one with the minimum value of d[u| + w(e)
S« SU{v}

d[v] «<d[u] + w(e)
pred|v]«u
}

*For each v¢S maintain d’[v]| = minimum value of d[u| + w(e)
over all verticesueSs.t.e = (w,v)isin G

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Implementing Dijkstra’s Algorithm

Need to
* keep current distance values d’[-| for nodesinV \ §
* find minimum current distance value d’|v]
* reduce distances in d’|-| when vertex v moved to S

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Data Structure Review

Priority Queue:
* Elements each with an associated key
* Operations
* Insert
* Find-min
* Return the element with the smallest key
* Delete-min
* Return the element with the smallest key and delete it from the data structure
* Decrease-key
* Decrease the key value of some element

Implementations
* Arrays: O(n) time find/delete-min, O(1) time insert/decrease-key
* Heaps: O(logn) time insert/decrease-key/delete-min, O(1) time find-min

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Dijkstra’s Algorithm with Priority Queues

* For each vertex v not in tree maintain cost d’[v] of current
cheapest path through tree to v

e Store v in priority queue with key = length of this path

* Operations:
* n — 1 insertions (each vertex added once)
* n — 1 delete-mins (each vertex deleted once)

* pick the vertex of smallest key, remove it from the priority
queue and add its edge to the graph

* < m decrease-keys (each edge updates one vertex)

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Dijskstra’s Algorithm with Priority Queues

Priority queue implementations
* Array
* insert 0(1), delete-min O(n), decrease-key O(1)
* total 0(n + n? + m) = 0(n?)
* Heap
* insert, delete-min, decrease-key all O (logn)
* total O(m logn)
* d-Heap (d = m/n)
m * insert, decrease-key O (logy,/»,n)
n—1 -« delete-min O((m/n)log,,m, n) Better for all values of m

Worse if m = 0(n?)

* total O(m log,, /,n)

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

