Lecture 4: BFS, DFS Properties/Applications, Topological Sort

HW1 Due today. Submit completed problems early. Don’t wait until the end.
HW2 out tonight.
Undirected Graph Search Application: Connected Components

Want to answer questions of the form:

Given: vertices u and v in G

Is there a path from u to v?

Idea: create array A s.t

$A[u] = \text{smallest numbered vertex connected to } u$

Answer is yes iff $A[u] = A[v]$

Q: Why is this better than an array $\text{Path}[u, v]$?
Undirected Graph Search Application: Connected Components

Initial state: all v unvisited
for $s \leftarrow 1$ to n do
 if state(s) \neq fully-explored then
 BFS(s): setting $A[u] \leftarrow s$ for each u found
 (and marking u visited/fully-explored)
 endfor
endfor

Total cost: $O(n + m)$
 • Each vertex is touched once in outer procedure and edges examined in different BFS runs are disjoint
 • Works also with Depth First Search ...
DFS(u) – Recursive Procedure

Global Initialization: mark all vertices "unvisited"

DFS(u)

mark u “visited” and add u to R

for each edge (u,v)

if (v is “unvisited”) DFS(v)

end for

mark u “fully-explored”
Properties of DFS(s)

Like BFS(s):
- DFS(s) visits x iff there is a path in G from s to x
- Edges into undiscovered vertices define depth-first spanning tree of G

Unlike the BFS tree:
- the DFS spanning tree isn’t minimum depth
- its levels don’t reflect min distance from the root
- non-tree edges never join vertices on the same or adjacent levels

BUT...
Non-tree edges in DFS tree of undirected graphs

Claim: All non-tree edges join a vertex and one of its descendents/ancestors in the DFS tree

- In other words ... No “cross edges”.

![Diagram showing non-tree edges]

[Image of a tree structure with non-tree edges highlighted]
No cross edges in DFS on undirected graphs

Claim: During $\text{DFS}(x)$ every vertex marked “visited” is a descendant of x in the DFS tree T

Claim: For every x, y in the DFS tree T, if (x, y) is an edge not in T then one of x or y is an ancestor of the other in T

Proof:

• One of $\text{DFS}(x)$ or $\text{DFS}(y)$ is called first, suppose WLOG that $\text{DFS}(x)$ was called before $\text{DFS}(y)$
• During $\text{DFS}(x)$, the edge (x, y) is examined
• Since (x, y) is a not an edge of T, y was already visited when edge (x, y) was examined during $\text{DFS}(x)$
• Therefore y was visited during the call to $\text{DFS}(x)$ so y is a descendant of x. □
Applications of Graph Traversal: Bipartiteness Testing

Definition: An undirected graph G is bipartite iff we can color its vertices red and green so each edge has different color endpoints.

Input: Undirected graph G

Goal: If G is bipartite, output a coloring; otherwise, output “NOT Bipartite”.

Fact: Graph G contains an odd-length cycle \Rightarrow it is not bipartite.

On a cycle the two colors must alternate, so
- green every 2nd vertex
- red every 2nd vertex
Can’t have either if length is not divisible by 2.
Applications of Graph Traversal: Bipartiteness Testing

WLOG (“without loss of generality”): Can assume that G is connected
 • Otherwise run on each component

Simple idea: start coloring nodes starting at a given node s
 • Color s red
 • Color all neighbors of s green
 • Color all their neighbors red, etc.
 • If you ever hit a node that was already colored
 • the same color as you want to color it, ignore it
 • the opposite color, output “NOT Bipartite” and halt
BFS gives Bipartiteness

Run BFS assigning all vertices from layer L_i the color $i \mod 2$

• i.e., red if they are in an even layer, green if in an odd layer

• if no edge joining two vertices of the same color
 • then it is a good coloring

• otherwise
 • there is a bad edge; output “Not Bipartite”

Why is that “Not Bipartite” output correct?
Why does BFS work for Bipartiteness?

Recall: All edges join vertices on the same or adjacent BFS layers
⇒ Any bad edge must join two vertices \(u \) and \(v \) in the same layer

Say the layer with \(u \) and \(v \) is \(L_j \)
\(u \) and \(v \) have common ancestor at some level \(L_i \) for \(i < j \)

Odd cycle of length \(2(j - i) + 1 \)
⇒ Not Bipartite
DFS(ν) for a directed graph
DFS(ν)

Graph with nodes and edges labeled:
- Tree edges: Directed edges from parent to child nodes.
- Forward edges: Directed edges from child to parent nodes.
- Back edges: Directed edges from descendant to ancestor nodes.
- Cross edges: Directed edges from nodes in different subtrees.

NO → cross edges

← cross edges
Properties of Directed DFS

• Before $\text{DFS}(s)$ returns, it visits all previously unvisited vertices reachable via directed paths from s

• Every cycle contains a back edge in the DFS tree
Strongly Connected Components of Directed Graphs

Defn: Vertices \(u \) and \(v \) are strongly connected iff they are on a directed cycle (there are paths from \(u \) to \(v \) and from \(v \) to \(u \)).

Defn: Can partition vertices of any directed graph into strongly connected components:
1. all pairs of vertices in the same component are strongly connected
2. can’t merge components and keep property 1

• Strongly connected components can be stored efficiently just like connected components
• Can be found by extending DFS algorithm in \(O(n + m) \) time using extra bookkeeping
 • We won’t cover the details
Strongly Connected Components

- **Tree edges**
- **Forward edges**
- **Back edges**
- **Cross edges**
Strongly Connected Components
Strongly Connected Components

No cycles in reduced graph
Directed Acyclic Graphs

A directed graph \(G = (V, E) \) is acyclic iff it has no directed cycles.

Terminology: A directed acyclic graph is also called a DAG.

After shrinking the strongly connected components of a directed graph to single vertices, the result is a DAG.
Topological Sort

Given: a directed acyclic graph (DAG) $G = (V, E)$

Output: numbering of the vertices of G with distinct numbers from 1 to n so that edges only go from lower numbered to higher numbered vertices

Applications:
- nodes represent tasks
- edges represent precedence between tasks
- topological sort gives a sequential schedule for solving them

Nice algorithmic paradigm for general directed graphs:
- Process strongly connected components one-by-one in the order given by topological sort of the DAG you get from shrinking them.
Directed Acyclic Graph
In-degree 0 vertices

Claim: Every DAG has a vertex of in-degree 0

Proof: By contradiction

Suppose every vertex has some incoming edge
Consider following procedure:

while (true) do
 \(v \leftarrow \text{some predecessor of } v \)

• After \(n + 1 \) steps where \(n = |V| \) there will be a repeated vertex
• This yields a cycle, contradicting that it is a DAG. ■
Topological Sort

• Can do using DFS

• Alternative simpler idea:
 • Any vertex of in-degree 0 can be given number 1 to start
 • Remove it from the graph
 • Then give a vertex of in-degree 0 number 2
 • Etc.
Topological Sort
Implementing Topological Sort

• Go through all edges, computing array with in-degree for each vertex \(O(m + n) \)

• Maintain a list of vertices of in-degree 0

• Remove any vertex in list and number it

• When a vertex is removed, decrease in-degree of each neighbor by 1 and add them to the list if their degree drops to 0

Total cost: \(O(m + n) \)