CSE 421 Introduction to Algorithms

Lecture 3: Overview, Graph Search

O, o, Ω , Θ -notation intuition

Introduction to Algorithms

- Some representative problems
 - Variety of techniques we'll cover
 - Seemingly small changes in a problem can require big changes in how we solve it

Some Representative Problems

Interval Scheduling:

- Single resource
- Reservation requests of form:

"Can I reserve it from start time s to finish time f?"

Interval Scheduling

Interval scheduling:

jobs don't overlap

Input: set of jobs with start times and finish times

Goal: find maximum size subset of mutually compatible jobs.

Interval Scheduling

Interval scheduling:

jobs don't overlap

Input: set of jobs with start times and finish times

Goal: find maximum size subset of mutually compatible jobs.

Interval Scheduling

- An optimal solution can be found using a "greedy algorithm"
 - Myopic kind of algorithm that seems to have no look-ahead
 - Greedy algorithms only work when the problem has a special kind of structure
 - When they do work they are typically very efficient

Weighted Interval Scheduling

- Same problem as interval scheduling except that each request i also has an associated value or weight w_i
 - w_i might be
 - amount of money we get from renting out the resource for that time period
 - amount of time the resource is being used

Weighted Interval Scheduling

Input: Set of jobs with start times, finish times, and weights

Goal: Find maximum weight subset of mutually compatible jobs.

Weighted Interval Scheduling

Ordinary interval scheduling is a special case of this problem

• Take all weights $w_i = 1$

Problem is quite different though

• E.g. one weight might dwarf all others

"Greedy algorithms" don't work

Solution: "Dynamic Programming"

• builds up optimal solutions from a table of solutions to smaller problems

A graph G = (V, E) is bipartite iff

- Set V of vertices has two disjoint parts X and Y
- Every edge in E joins a vertex from X and a vertex from Y

Set $M \subseteq E$ is a matching in G iff no two edges in M share a vertex

Goal: Find a matching M in G of maximum size.

Differences from stable matching

- limited set of possible partners for each vertex
- sides may not be the same size
- no notion of stability; matching everything may be impossible.

Input: Bipartite graph

Goal: Find maximum size matching.

- Models assignment problems
 - X represents customers, Y represents salespeople
 - X represents professors, Y represents courses
- If |X| = |Y| = n
 - G has perfect matching iff maximum matching has size n

Solution: polynomial-time algorithm using "augmentation" technique

• Also used for solving more general class of network flow problems

Defn: For graph G = (V, E) a set $I \subseteq V$ is independent iff no two nodes in I are joined by an edge

Input: Graph G = (V, E)

Goal: Find an independent set I in V of maximum possible size

Models conflicts and mutual exclusion

Input: Graph.

Goal: Find a maximum size independent set.

Generalizes

- Interval Scheduling
 - Vertices in the graph are the requests
 - Vertices are joined by an edge if they are not compatible

Bipartite Matching

- Given bipartite graph G = (V, E) create new graph G' = (V', E') (sometimes called the line-graph of G) where
 - V' = E
 - Two elements of V' (which are edges in G) are joined iff they touch
- Independent set I in $V' \Rightarrow$ no edges in I touch $\Rightarrow I$ is matching in G

Independent Set

$$G = (V, E)$$

$$G' = (V', E')$$

Independent Set

$$G = (V, E)$$

$$G' = (V', E')$$

No polynomial-time algorithm is known

- But to convince someone that there is a large independent set all you'd only need to tell them what the set is
 - they can easily convince themselves that the set is large enough and independent
- Convincing someone that there isn't such a set seems much harder

We will show that **Independent Set** is **NP-complete**

Class of all the hardest problems that have the property above

Introduction to Algorithms

Graph Search/Traversal

Undirected Graph G = (V,E)

Directed Graph G = (V,E)

Graph Traversal

Learn the basic structure of a graph

Walk from a fixed starting vertex s to find all vertices reachable from s

Generic Graph Traversal Algorithm

```
Given: Graph graph G = (V, E) vertex S \in V
```

Find: set R of vertices reachable from $S \in V$

```
Reachable(s): R \leftarrow \{s\} while there is a (u, v) \in E where u \in R and v \notin R Add v to R return R
```

Generic Traversal Always Works

Claim: At termination, R is the set of nodes reachable from s

Proof

- \subseteq : For every node $v \in R$ there is a path from s to v
 - Easy induction based on edges found.
- \supseteq : Suppose there is a node $w \notin R$ reachable from s via a path P
 - Take first node v on P such that $v \notin R$
 - Predecessor \boldsymbol{u} of \boldsymbol{v} in \boldsymbol{P} satisfies
 - $u \in R$
 - $(u, v) \in E$
 - But this contradicts the fact that the algorithm exited the while loop.

Graph Traversal

Learn the basic structure of a graph

Walk from a fixed starting vertex s to find all vertices reachable from s

Three states of vertices

- unvisited
- visited/discovered (in R)
- fully-explored (in R and all neighbors have been visited)

Breadth-First Search

Completely explore the vertices in order of their distance from s

Naturally implemented using a queue

BFS(s)

Properties of BFS

BFS(s) visits x iff there is a path in G from s to x.

Edges followed to undiscovered vertices define a breadth first spanning tree of *G*

Layer *i* in this tree:

 L_i = set of vertices u with shortest path in G from root s of length i.

Properties of BFS

Claim: For undirected graphs:

All edges join vertices on the same or adjacent layers of BFS tree

Proof: Suppose not...

Then there would be vertices (x, y) s.t. $x \in L_i$ and $y \in L_j$ and j > i + 1.

Then, when vertices adjacent to x are considered in BFS, y would be added to L_{i+1} and not to L_i .

Contradiction.

BFS Application: Shortest Paths

