CSE 421
Introduction to Algorithms

Lecture 3: Overview, Graph Search
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O(g(n)): ratio eventually
below a line forever
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Introduction to Algorithms

* Some representative problems
* Variety of techniques we’ll cover

e Seemingly small changes in a problem can require big changes in
how we solve it
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Some Representative Problems

Interval Scheduling:
* Single resource
e Reservation requests of form:

“Can | reserve it from start time s to finish time f?7”
s< f
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Interval Scheduling

Interval scheduling:
Input: set of jobs with start times and finish times

jobs don’t overlap

Goal: find maximum size subset of mutually compatible jobs.
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Interval Scheduling

Interval scheduling:
Input: set of jobs with start times and finish time

jobs don’t overlap

Goal: find maximum size subset of mutually compatible jobs.
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Interval Scheduling

* An optimal solution can be found using a “greedy algorithm”

* Myopic kind of algorithm that seems to have no look-ahead

* Greedy algorithms only work when the problem has a special kind of
structure

 When they do work they are typically very efficient
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Weighted Interval Scheduling

 Same problem as interval scheduling except that each request i also has
an associated value or weight w;

* w; might be
* amount of money we get from renting out the resource for that time period
e amount of time the resource is being used
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Weighted Interval Scheduling

Input: Set of jobs with start times, finish times, and weights

Goal: Find maximum weight subset of mutually compatible jobs.
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Weighted Interval Scheduling

Ordinary interval scheduling is a special case of this problem
* Take all weightsw; =1

Problem is quite different though
* E.g. one weight might dwarf all others

“Greedy algorithms” don’t work

Solution: “Dynamic Programming”
* builds up optimal solutions from a table of solutions to smaller problems
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Bipartite Matching

A graph G = (V, E) is bipartite iff
* Set V of vertices has two disjoint parts X and Y
* Every edge in E joins a vertex from X and a vertex from Y

Set M C E is a matching in G iff no two edges in M share a vertex
Goal: Find a matching M in G of maximum size.

Differences from stable matching
* limited set of possible partners for each vertex
* sides may not be the same size
* no notion of stability; matching everything may be impossible.
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Bipartite Matching

Input: Bipartite graph

Goal: Find maximum size matching.
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Bipartite Matching

* Models assignment problems
* X represents customers, Y represents salespeople
* X represents professors, Y represents courses

c If| X|=|Y|=n
* ( has perfect matching iff maximum matching has size n

Solution: polynomial-time algorithm using “augmentation” technique
* Also used for solving more general class of network flow problems
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Independent Set

Defn: For graph G = (V,E) aset I € V is independent iff no two nodes in I are
joined by an edge

Input: Graph G = (V,E)

Goal: Find an independent set I in V of maximum possible size

* Models conflicts and mutual exclusion
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Independent Set

Input: Graph.

Goal: Find a maximum size independent set.
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Independent Set

Generalizes

* Interval Scheduling
* Vertices in the graph are the requests
 Vertices are joined by an edge if they are not compatible

* Bipartite Matching
* Given bipartite graph G = (V, E) create new graph ¢’ = (V’, E’)
(sometimes called the line-graph of G) where
V' =FE
* Two elements of V’ (which are edges in G) are joined iff they touch
* Independent set I in V' = no edges in I touch = I is matchingin G
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Bipartite Matching Independent Set

G = (V,E)
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Bipartite Matching Independent Set

G = (V,E)
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Independent Set

No polynomial-time algorithm is known

* But to convince someone that there is a large independent set all you’d
only need to tell them what the set is

* they can easily convince themselves that the set is large enough and
independent

* Convincing someone that there isn’t such a set seems much harder

We will show that Independent Set is NP-complete
* Class of all the hardest problems that have the property above
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Introduction to Algorithms

* Graph Search/Traversal
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Undirected Graph G = (V,E)




Directed Graph G = (V,E)
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Graph Traversal

Learn the basic structure of a graph
Walk from a fixed starting vertex s to find all vertices reachable from s
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Generic Graph Traversal Algorithm

Given: Graph graph G = (V,E) vertex seV

Find: set R of vertices reachable from sV

Reachable(s):
R« {s}
while thereisa (u,v) € E whereu € Randv € R
Addvto R
return R
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Generic Traversal Always Works

®S
Claim: At termination, R is the set of nodes reachable from s
Proof P R
_: For every node v<R there is a path from s to v
 Easy induction based on edges found.
O: Suppose there is a node w¢R reachable from s via a path P u
%

» Take first node v on P such that vgR
* Predecessor u of v in P satisfies
* UuER
 (u,v) €E
* But this contradicts the fact that the algorithm exited the while
loop. W
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Graph Traversal

Learn the basic structure of a graph
Walk from a fixed starting vertex s to find all vertices reachable from s

Three states of vertices
* unvisited
* visited/discovered (in R)
* fully-explored (in R and all neighbors have been visited)
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Breadth-First Search

Completely explore the vertices in order of their distance from s

Naturally implemented using a queue
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BFS(s)

Global initialization: mark all vertices “unvisited”
BFS(s)
mark s “visited”; R<—{s}; layer Ly<—{s}; i < 0
while L; not empty
Lit1 <9
for eachuel;
for each edge (u, v)
if (v is “unvisited”)
mark v “visited”
Add v to set R and to layer L;, 4
mark u “fully-explored”
i<—i+1
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Properties of BFS

BFS(s) visits x iff there is a path in G from s to x.

Edges followed to undiscovered vertices define a
breadth first spanning tree of G

Layer i in this tree:
L; = set of vertices u with shortest path in & from root s of length i.
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Properties of BFS

Claim: For undirected graphs:
All edges join vertices on the same or adjacent layers of BFS tree

Proof: Suppose not...

Then there would be vertices (x,y) s.t. xeL; and yeL;jand j > i + 1.

Then, when vertices adjacent to x are considered in BFS,
y would be added to L;,1 and not to L;.

Contradiction. m
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BFS Application: Shortest Paths
ORL Lo

Tree gives shortest
paths from start vertex

L4
L,
2
L;
can label by distances from start Ly
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