Lecture 3: Overview, Graph Search
O, o, Ω, Θ-notation intuition

\(f(n) \) is...

\(\leq O(g(n)) \): ratio eventually below a line forever

\(o(g(n)) \): ratio goes to 0

\(\Omega(g(n)) \): ratio eventually above a line forever

\(\Theta(g(n)) \): both \(O \) and \(\Omega \)
Introduction to Algorithms

• Some representative problems
 • Variety of techniques we’ll cover
 • Seemingly small changes in a problem can require big changes in how we solve it
Some Representative Problems

Interval Scheduling:

• Single resource
• Reservation requests of form:
 “Can I reserve it from start time s to finish time f?”
 \[s < f \]
Interval Scheduling

Interval scheduling:

Input: set of jobs with start times and finish times

Goal: find maximum size subset of mutually compatible jobs.

Jobs don’t overlap
Interval Scheduling

Interval scheduling:

Input: set of jobs with start times and finish times

Goal: find maximum size subset of mutually compatible jobs.
Interval Scheduling

• An optimal solution can be found using a “greedy algorithm”

 • Myopic kind of algorithm that seems to have no look-ahead

 • Greedy algorithms only work when the problem has a special kind of structure

 • When they do work they are typically very efficient
Weighted Interval Scheduling

• Same problem as interval scheduling except that each request i also has an associated value or weight w_i

 • w_i might be
 • amount of money we get from renting out the resource for that time period
 • amount of time the resource is being used
Weighted Interval Scheduling

Input: Set of jobs with start times, finish times, and weights

Goal: Find maximum weight subset of mutually compatible jobs.
Weighted Interval Scheduling

Ordinary interval scheduling is a special case of this problem
 • Take all weights $w_i = 1$

Problem is quite different though
 • E.g. one weight might dwarf all others

“Greedy algorithms” don’t work

Solution: “Dynamic Programming”
 • builds up optimal solutions from a table of solutions to smaller problems
Bipartite Matching

A graph $G = (V, E)$ is bipartite iff

- Set V of vertices has two disjoint parts X and Y
- Every edge in E joins a vertex from X and a vertex from Y

Set $M \subseteq E$ is a matching in G iff no two edges in M share a vertex

Goal: Find a matching M in G of maximum size.

Differences from stable matching

- limited set of possible partners for each vertex
- sides may not be the same size
- no notion of stability; matching everything may be impossible.
Bipartite Matching

Input: Bipartite graph

Goal: Find maximum size matching.
Bipartite Matching

- Models assignment problems
 - \(X \) represents customers, \(Y \) represents salespeople
 - \(X \) represents professors, \(Y \) represents courses

- If \(|X| = |Y| = n \)
 - \(G \) has perfect matching iff maximum matching has size \(n \)

Solution: polynomial-time algorithm using “augmentation” technique
- Also used for solving more general class of network flow problems
Independent Set

Defn: For graph $G = (V, E)$ a set $I \subseteq V$ is independent iff no two nodes in I are joined by an edge

Input: Graph $G = (V, E)$

Goal: Find an independent set I in V of maximum possible size

- Models conflicts and mutual exclusion
Independent Set

Input: Graph.

Goal: Find a maximum size independent set.
Independent Set

Generalizes

• **Interval Scheduling**
 • Vertices in the graph are the requests
 • Vertices are joined by an edge if they are not compatible

• **Bipartite Matching**
 • Given bipartite graph $G = (V, E)$ create new graph $G' = (V', E')$
 (sometimes called the line-graph of G) where
 • $V' = E$
 • Two elements of V' (which are edges in G) are joined iff they touch
 • Independent set I in $V' \Rightarrow$ no edges in I touch $\Rightarrow I$ is matching in G
Bipartite Matching

\[G = (V, E) \]

Independent Set

\[G' = (V', E') \]

Line graph of \(G \)
Bipartite Matching

\[G = (V, E') \]

Independent Set

\[G' = (V', E'') \]
Independent Set

No polynomial-time algorithm is known
 • But to convince someone that there is a large independent set all you’d only need to tell them what the set is
 • they can easily convince themselves that the set is large enough and independent
 • Convincing someone that there isn’t such a set seems much harder

We will show that Independent Set is NP-complete
 • Class of all the hardest problems that have the property above
Introduction to Algorithms

• Graph Search/Traversal
Undirected Graph $G = (V, E)$
Directed Graph $G = (V,E)$
Graph Traversal

Learn the basic structure of a graph
Walk from a fixed starting vertex s to find all vertices reachable from s
Generic Graph Traversal Algorithm

Given: Graph graph $G = (V, E)$ vertex $s \in V$
Find: set R of vertices reachable from $s \in V$

Reachable(s):

$R \leftarrow \{s\}$

while there is a $(u, v) \in E$ where $u \in R$ and $v \notin R$

Add v to R

return R
Generic Traversal Always Works

Claim: At termination, R is the set of nodes reachable from s

Proof

\subseteq: For every node $v \in R$ there is a path from s to v
- Easy induction based on edges found.

\supseteq: Suppose there is a node $w \not\in R$ reachable from s via a path P
- Take first node v on P such that $v \not\in R$
- Predecessor u of v in P satisfies
 - $u \in R$
 - $(u, v) \in E$
- But this contradicts the fact that the algorithm exited the while loop. ■
Graph Traversal

Learn the basic structure of a graph
Walk from a fixed starting vertex s to find all vertices reachable from s

Three states of vertices
- unvisited
- visited/discovered (in R)
- fully-explored (in R and all neighbors in R)
Breadth-First Search

Completely explore the vertices in order of their distance from s

Naturally implemented using a queue
BFS(s)

Global initialization: mark all vertices “unvisited”

BFS(s)

mark s “visited”; $R \leftarrow \{s\}$; layer $L_0 \leftarrow \{s\}$; $i \leftarrow 0$

while L_i not empty

$L_{i+1} \leftarrow \emptyset$

for each $u \in L_i$

for each edge (u, v)

if (v is “unvisited”)

mark v “visited”

Add v to set R and to layer L_{i+1}

mark u “fully-explored”

$i \leftarrow i + 1$
Properties of BFS

BFS(s) visits x iff there is a path in G from s to x.

Edges followed to undiscovered vertices define a breadth first spanning tree of G

Layer i in this tree:

L_i = set of vertices u with shortest path in G from root s of length i.
Properties of BFS

Claim: For undirected graphs:
 All edges join vertices on the same or adjacent layers of BFS tree

Proof: Suppose not...

Then there would be vertices \((x, y)\) s.t. \(x \in L_i\) and \(y \in L_j\) and \(j > i + 1\).

Then, when vertices adjacent to \(x\) are considered in BFS, \(y\) would be added to \(L_{i+1}\) and not to \(L_j\).

Contradiction.
BFS Application: Shortest Paths

Tree gives shortest paths from start vertex

can label by distances from start
Want to answer questions of the form:

Given: vertices u and v in G

Is there a path from u to v?