CSE 421 Introduction to Algorithms

Lecture 1: Intro & Stable Matching

W PAUL G. ALLEN SCHOOL of computer science & engineering

Instructor

Paul Beame [he/him]

beame@cs

Specialty: Complexity and Applications

https://homes.cs.washington.edu/~beame

Office: CSE 668

A Dedicated Team of TAs

Raymond Guo

Samarjit Kaushik

Kyle Mumma

Edward Qin

Robert Stevens

Glenn Sun

Maxwell Wang

Ben Zhang

Muru Zhang

See <u>https://cs.washington.edu/421/staff.html</u> to learn more about their backgrounds and interests!

W PAUL G. ALLEN SCHOOL of computer science & engineering

Getting Started (Your TODO List)

- Make sure you are on Ed (a.k.a. EdStem)!
 - Check your inbox and maybe your SPAM filter for an invitation
- Attend your first Quiz Section tomorrow!
- Homework 1 will be out tonight
 - You will have enough to start on it after section tomorrow
 - Start thinking about it right away after that
- Get all the credit you deserve: Sign up for CSE 493Z
- Attend lecture and participate
 - Students who participate do better on average

Coursework

- 8 homework assignments roughly (due Wednesdays)
 - Typically 1 mechanical problem
 3 long-form problems
 - See the Homework Guide linked on the course website
 - Start early to reduce amount of time you need to concentrate on them
 - Use your brain's background processing
 - OK to talk with fellow students but solution write-up must be your own
 - See syllabus https://cs.washington.edu/421/syllabus.html
 - Use of outside resources for solutions forbidden (see syllabus)
 - Generative AI does worse than almost anyone in the class would on their own...

Late Problem Days

- Late days per problem rather than for the whole assignment
 - Each problem is a separate Gradescope submission
 - Max 2 late days per problem; limit on total # of late problem days
 - You should submit anything that is done as soon as you are finished with it
 - See the syllabus for details

Exam dates

Midterm: Wednesday Nov 8 (possibly evening to give you more time for the same problems)

Final Exam: Standard exam time and place: Monday Dec 11, 2:30-4:20 here

Grading scheme

- Homework 55%
- Midterm 15-20%
- Final Exam 25-30%

Textbook

Kleinberg-Tardos: Algorithm Design

- International Edition just as good
- Plus supplements on website
- Worth reading
 - Good for reading sequentially and learning bow to think like an algorithm designer
 - Not as good for random access
- Not required
 - All required content will be on slides in lectures and quiz section

Introduction to Algorithms

- Basic techniques for the design and analysis of algorithms.
 - Develop a toolkit of ways to find efficient algorithms to solve problems
 - Prove that the algorithms are correct
 - Analyze their efficiency properties
 - Communicate these algorithms and their properties to others

On efficiency

- Originally, efficiency was important for many reasons but partly because computers were weak
- Now we have powerful computers but
 - Data has grown to be enormous
 - We need even more efficient algorithms at this scale
 - Computation has an *energy cost* and represents a significant part of society's total energy use
 - Efficient computing is essential to reducing that cost
 - Additional power is of little help for inefficient (e.g. brute force) solutions

Introduction to Algorithms

Stable Matching

Matching Medical Residents to Hospitals

Goal: Given a set of preferences among hospitals and medical school residents (graduating medical students), design a *self-reinforcing* admissions process.

Unstable pair: applicant x and hospital y are unstable if:

- *x* prefers *y* to their assigned hospital.
- **y** prefers **x** to one of its admitted residents.

Stable assignment. Assignment with no unstable pairs.

- Natural and desirable condition.
- Individual self-interest will prevent any applicant/hospital side deal from being made.

Simpler: Stable Matching Problem

Goal: Given two groups of *n* people each, find a "suitable" matching.

- Participants rate members from opposite group.
- Each person lists members from the other group in order of preference from best to worst.

PAUL G. ALLEN SCHOOL of computer science & engineering

Perfect matching: everyone is matched to precisely one person from the other group

Stability: self-reinforcing, i.e. no incentive to undermine assignment by joint action.

- For a matching *M*, an unmatched pair *p*-*r* from different groups is *unstable* if *p* and *r* prefer each other to current partners.
- Unstable pair *p*-*r* could each improve by ignoring the assignment.

Stable matching: perfect matching with no unstable pairs.

Stable matching problem: Given the preference lists of *n* people from each of two groups, find a stable matching between the two groups if one exists.

Q: Is matching (X,C), (Y,B), (Z,A) stable? unstable it X would proter A A would proter X M not the Mly Case favorite least favorite favorite least favorite 2nd 3rd 1st 3rd 1st 2nd A Х С Α У X Ζ В У С В Х Ζ В У Α Ζ С X С У Ζ A В

Group P Preference Profile

Q: Is matching (X,*C*), (Y,B), (Z,*A*) stable? **A:** No. B and X prefer each other.

Group P Preference Profile

Q: Is matching (X,A), (Y,B), (Z,C) stable?

Group P Preference Profile

Q: Is matching (X,A), (Y,B), (Z,C) stable? A: Yes

Group **P** Preference Profile

Variant: Stable Roommate Problem

- Q. Do stable matchings always exist?
- A. Not obvious a priori.

Stable roommate problem:

- 2n people; each person ranks others from 1 to 2n 1.
- Assign roommate pairs so that no unstable pairs.

 $(A,B), (C,D) \Rightarrow B-C$ unstable $(A,C), (B,D) \Rightarrow A-B$ unstable $(A,D), (B,C) \Rightarrow A-C$ unstable

Observation: Stable matchings do not always exist for stable roommate problem.

Propose-And-Reject Algorithm

Propose-and-reject algorithm: [Gale-Shapley 1962]

Intuitive method that guarantees to find a stable matching.

• Members of one group *P* make *proposals*, the other group *R* receives proposals

Proof of Correctness: Termination (not obvious from the code)

Observation 1: Members of **P** propose in decreasing order of preference.

Claim: The Gale-Shapley Algorithm terminates after at most n^2 iterations.

Proof: Proposals are never repeated (by Observation 1) and there are only n^2 possible proposals.

It could be nearly that bad...

General form of this example will take n(n-1) + 1 proposals.

Preference Profile for P

	1 ^{s†}	2 nd	3 rd	4 th	5 th
A	W	х	У	Z	V
В	x	У	Z	v	W
С	У	Z	V	W	x
D	Z	v	W	x	У
E	V	W	х	У	Z

Preference Profile for R

Proof of Correctness: Perfection

Observation 2: Once a member of **R** is matched, they never become free; they only "trade up."

Claim: Everyone gets matched.

Proof:

- After some p proposes to the last person on their list, all the r in R have been proposed to by someone (by p at least).
- By Observation 2, every *r* in *R* is matched at that point.
- Since |P| = |R| every p in P is also matched.

Proof of Correctness: Stability

Claim: No unstable pairs in the final Gale-Shapley matching *M*

Proof: Consider a pair *p-r* not matched by *M*

Case 1: *p* never proposed to *r*.

 $\Rightarrow p$ prefers *M*-partner to *r*.

 $\Rightarrow p$ -*r* is not unstable for *M*.

Case 2: *p* proposed to *r*.

 \Rightarrow *r* rejected *p* (right away or later when trading up)

- \Rightarrow **r** prefers **M**-partner to **p**.
- $\Rightarrow p$ -*r* is not unstable for *M*.

Summary

Stable matching problem: Given *n* people in each of two groups, and their preferences, find a stable matching if one exists.

Stable: No pair of people both prefer to be with each other rather than with their assigned partner

Gale-Shapley algorithm: Guarantees to find a stable matching for *any* problem instance.

- **Q:** How do we implement GS algorithm efficiently?
- **Q:** If there are multiple stable matchings, which one does GS find?

Implementation for Stable Matching Algorithms

- Input size
 - $N = 2n^2$ words
 - 2n people each with a preference list of length n
 - $2n^2 \log n$ bits
 - specifying an ordering for each preference list takes $n \log n$ bits
- Brute force algorithm
 - Try all *n*! possible matchings
 - Do any of them work?
- Gale-Shapley Algorithm
 - n² iterations, each costing constant time as follows ...

Propose-And-Reject Algorithm

Propose-and-reject algorithm: [Gale-Shapley 1962]

Intuitive method that guarantees to find a stable matching.

• Members of one group *P* make *proposals*, the other group *R* receives proposals

Efficient Implementation

How do we get the an $O(n^2)$ time implementation?

Input: Representing members of the two groups **P** and **R** and their preferences:

- Assume elements of **P** (proposers) are numbered **1**, ..., **n**.
- Assume elements of **R** (receivers) are numbered **1**', ..., **n**'.
- For each proposer, a list/array of the *n* receivers, ordered by preference.
- For each receiver, a list/array of the *n* proposers, ordered by preference.

The matching:

- Maintain two arrays match[p], and match'[r].
 - set entry to **0** if free
 - if p matched to r then match[p]=r and match'[r]=p

Making proposals:

- Maintain a list of free proposers, e.g., in a queue.
- Maintain an array count[p] that counts the number of proposals already made by proposer p.

Efficient Implementation

Rejecting/accepting proposals:

- Does receiver r prefer proposer p to proposer p'?
 - Using original preference list would be slow
- For each receiver, create *inverse* of preference list of proposers.
- Constant time access for each query after O(n) preprocessing per receiver. O(n²) total preprocessing cost.

Propose-And-Reject Algorithm

Propose-and-reject algorithm: [Gale-Shapley 1962]

Intuitive method that guarantees to find a stable matching.

• Members of one group *P* make *proposals*, the other group *R* receives proposals

```
Initialize each person to be free
while (some p in P is free and hasn't proposed to everyone in R) {
   Choose some such free p in P who hasn't proposed to everyone in R
   r = 1<sup>st</sup> person on p's preference list to whom p has not yet proposed
   if (r is free)
      tentatively match (p,r) //p and r both engaged, no longer free
   else if (r prefers p to current tentative match p')
      replace (p',r) by (p,r) //p now engaged, p' now free
   else
      r rejects p
}
```