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Getting Started (Your TODO List)

• Make sure you are on Ed (a.k.a. EdStem)!

• Check your inbox – and maybe your SPAM filter – for an invitation

• Attend your first Quiz Section tomorrow!

• Homework 1 will be out tonight 

• You will have enough to start on it after section tomorrow 

• Start thinking about it right away after that 

• Get all the credit you deserve: Sign up for CSE 493Z

• Attend lecture and participate

• Students who participate do better on average
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Coursework

• 8 homework assignments roughly (due Wednesdays)

• Typically 1 mechanical problem
3 long-form problems

• See the Homework Guide linked on the course website

• Start early to reduce amount of time you need to concentrate on them

• Use your brain’s background processing

• OK to talk with fellow students but solution write-up must be your own

• See syllabus https://cs.washington.edu/421/syllabus.html

• Use of outside resources for solutions forbidden (see syllabus)

• Generative AI does worse than almost anyone in the class would on their own…
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Late Problem Days

• Late days per problem rather than for the whole assignment

• Each problem is a separate Gradescope submission

• Max 2 late days per problem; limit on total # of late problem days

• You should submit anything that is done as soon as you are finished 
with it

• See the syllabus for details 

6



Exam dates

Midterm: Wednesday Nov 8 (possibly evening to give  
you more time for the same problems)

Final Exam: Standard exam time and place:                   
Monday Dec 11, 2:30-4:20 here

Grading scheme
• Homework 55%

• Midterm 15-20%

• Final Exam 25-30%
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Textbook

Kleinberg-Tardos: Algorithm Design

• International Edition just as good

• Plus supplements on website

• Worth reading

• Good for reading sequentially and learning 
how to think like an algorithm designer

• Not as good for random access

• Not required

• All required content will be on slides in 
lectures and quiz section
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Introduction to Algorithms

• Basic techniques for the design and analysis of algorithms. 

• Develop a toolkit of ways to find efficient algorithms to solve problems

• Prove that the algorithms are correct

• Analyze their efficiency properties

• Communicate these algorithms and their properties to others
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On efficiency

• Originally, efficiency was important for many reasons but partly 
because computers were weak

• Now we have powerful computers but

• Data has grown to be enormous

• We need even more efficient algorithms at this scale

• Computation has an energy cost and represents a significant part of 
society’s total energy use

• Efficient computing is essential to reducing that cost

• Additional power is of little help for inefficient (e.g. brute force) solutions
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Introduction to Algorithms

• Stable Matching
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Matching Medical Residents to Hospitals

Goal: Given a set of preferences among hospitals and medical school 

residents (graduating medical students), design a self-reinforcing admissions 

process.

Unstable pair:  applicant � and hospital � are unstable if:

• � prefers � to their assigned hospital.

• � prefers � to one of its admitted residents.

Stable assignment.  Assignment with no unstable pairs.

• Natural and desirable condition.

• Individual self-interest will prevent any applicant/hospital side deal 
from being made.
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Simpler: Stable Matching Problem

Goal: Given two groups of � people each, find a "suitable" matching.

• Participants rate members from opposite group.

• Each person lists members from the other group in order of preference 

from best to worst.
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Stable Matching Problem

Perfect matching:  everyone is matched to precisely one person from the other group 

Stability: self-reinforcing, i.e. no incentive to undermine assignment by joint action.

• For a matching �, an unmatched pair �-� from different groups is unstable if � and �
prefer each other to current partners.

• Unstable pair �-� could each improve by ignoring the assignment.

Stable matching: perfect matching with no unstable pairs.

Stable matching problem:  Given the preference lists of � people from each of two 

groups, find a stable matching between the two groups if one exists.
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Stable Matching Problem

Q: Is matching (X,C), (Y,B), (Z,A) stable?
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Stable Matching Problem

Q: Is matching (X,C), (Y,B), (Z,A) stable?

A: No. B and X prefer each other.
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Stable Matching Problem

Q: Is matching (X,A), (Y,B), (Z,C) stable?
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Stable Matching Problem

Q: Is matching (X,A), (Y,B), (Z,C) stable?

A: Yes
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Variant:  Stable Roommate Problem

Q. Do stable matchings always exist?

A. Not obvious a priori.

Stable roommate problem:

• �� people; each person ranks others from � to �� − �.

• Assign roommate pairs so that no unstable pairs.

Observation:  Stable matchings do not always exist for stable roommate problem.
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Propose-And-Reject Algorithm

Propose-and-reject algorithm: [Gale-Shapley 1962]

Intuitive method that guarantees to find a stable matching.

• Members of one group 
 make proposals, the other group � receives proposals

Initialize each person to be free.

while (some p in P is free) {

Choose some free p in P

r = 1st person on p's preference list to whom p has not yet proposed

if (r is free)

tentatively match (p,r) //p and r both engaged, no longer free

else if (r prefers p to current tentative match p’)

replace (p’,r) by (p,r)   //p now engaged, p’ now free

else

r rejects p

}
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Proof of Correctness:  Termination (not obvious from the code)

Observation 1: Members of 
 propose in decreasing order of preference.

Claim: The Gale-Shapley Algorithm terminates after at most �� iterations.

Proof:  Proposals are never repeated (by Observation 1) and there are only �� possible proposals.

It could be nearly that bad…

General form of this example will                                                                                            

take �(� − �) + � proposals.
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Proof of Correctness:  Perfection

Observation 2: Once a member of � is matched, they never become free; 

they only "trade up.“

Claim: Everyone gets matched.

Proof:  

• After some � proposes to the last person on their list, all the � in �
have been proposed to by someone (by � at least).

• By Observation 2, every � in � is matched at that point.

• Since 
 = � every � in 
 is also matched.
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Proof of Correctness:  Stability

Claim: No unstable pairs in the final Gale-Shapley matching �

Proof:  Consider a pair �-� not matched by �

Case 1: � never proposed to �.

 � prefers �-partner to �. 

 �-� is not unstable for �.

Case 2: � proposed to �.

 � rejected � (right away or later when trading up)

 � prefers �-partner to �.

 �-� is not unstable for �.
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Summary

Stable matching problem: Given � people in each of two groups, and 

their preferences, find a stable matching if one exists.

Gale-Shapley algorithm:  Guarantees to find a stable matching for any

problem instance.

Q: How do we implement GS algorithm efficiently?

Q: If there are multiple stable matchings, which one does GS find?
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Stable: No pair of people both prefer to be with each other rather than with their assigned partner



Implementation for Stable Matching Algorithms

• Input size

• � = ��� words

• �� people each with a preference list of length �

• ��� 
log � bits

• specifying an ordering for each preference list takes � log � bits

• Brute force algorithm

• Try all �! possible matchings

• Do any of them work?

• Gale-Shapley Algorithm

• �� iterations, each costing constant time as follows …
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Propose-And-Reject Algorithm

Propose-and-reject algorithm: [Gale-Shapley 1962]

Intuitive method that guarantees to find a stable matching.

• Members of one group 
 make proposals, the other group � receives proposals

Initialize each person to be free.

while (some p in P is free) {

Choose some free p in P

r = 1st person on p's preference list to whom p has not yet proposed

if (r is free)

tentatively match (p,r) //p and r both engaged, no longer free

else if (r prefers p to current tentative match p’)

replace (p’,r) by (p,r)   //p now engaged, p’ now free

else

r rejects p

}
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Efficient Implementation

How do we get the an �(��) time implementation?

Input: Representing members of the two groups 
 and � and their preferences:

• Assume elements of 
 (proposers) are numbered �, … , �.

• Assume elements of � (receivers) are numbered ��, … , ��.

• For each proposer, a list/array of the � receivers, ordered by preference.

• For each receiver, a list/array of the � proposers, ordered by preference.

The matching:

• Maintain two arrays match[�], and match’[�].

• set entry to 0 if free

• if � matched to � then match[�]=� and match’[�]=�

Making proposals:

• Maintain a list of free proposers, e.g., in a queue.

• Maintain an array count[�] that counts the number of proposals already made by 
proposer �.
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Efficient Implementation

Rejecting/accepting proposals:

• Does receiver � prefer proposer � to proposer �′?

• Using original preference list would be slow

• For each receiver, create inverse of preference list of proposers.

• Constant time access for each query after �(�) preprocessing per 

receiver. �(��) total preprocessing cost.

for i = 1 to n

inverse[pref[i]] = i

pref

1st

8

2nd

7

3rd

3

4th

4

5th

1 5 26

6th 7th 8th�

inverse 4th 2nd8th 6th5th 7th 1st3rd

1 2 3 4 5 6 7 8�

� prefers proposer 3 to 6

since inverse[3] = 2 < 7 =inverse[6]
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Proposer 3 or proposer 6 ?



Propose-And-Reject Algorithm

Propose-and-reject algorithm: [Gale-Shapley 1962]

Intuitive method that guarantees to find a stable matching.

• Members of one group 
 make proposals, the other group � receives proposals

Initialize each person to be free.

while (some p in P is free and hasn't proposed to everyone in R) {

Choose some such free p in P who hasn’t proposed to everyone in R

r = 1st person on p's preference list to whom p has not yet proposed

if (r is free)

tentatively match (p,r) //p and r both engaged, no longer free

else if (r prefers p to current tentative match p’)

replace (p’,r) by (p,r) //p now engaged, p’ now free

else

r rejects p

}
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