
CSE 421

Introduction to Algorithms

Lecture 1: Intro & Stable Matching

1

https://cs.washington.edu/421

Instructor

2

Paul Beame [he/him]

beame@cs

Specialty: Complexity and Applications

https://homes.cs.washington.edu/~beame

Office: CSE 668

A Dedicated Team of TAs

3

Raymond Guo Samarjit KaushikDaniel Gao Kyle Mumma Edward Qin Robert Stevens

Glenn Sun Aman Thukral Tom Tian Maxwell Wang Ben Zhang Muru Zhang

See https://cs.washington.edu/421/staff.html to learn more about their backgrounds and interests!

Getting Started (Your TODO List)

• Make sure you are on Ed (a.k.a. EdStem)!

• Check your inbox – and maybe your SPAM filter – for an invitation

• Attend your first Quiz Section tomorrow!

• Homework 1 will be out tonight

• You will have enough to start on it after section tomorrow

• Start thinking about it right away after that

• Get all the credit you deserve: Sign up for CSE 493Z

• Attend lecture and participate

• Students who participate do better on average

4

Coursework

• 8 homework assignments roughly (due Wednesdays)

• Typically 1 mechanical problem
3 long-form problems

• See the Homework Guide linked on the course website

• Start early to reduce amount of time you need to concentrate on them

• Use your brain’s background processing

• OK to talk with fellow students but solution write-up must be your own

• See syllabus https://cs.washington.edu/421/syllabus.html

• Use of outside resources for solutions forbidden (see syllabus)

• Generative AI does worse than almost anyone in the class would on their own…

5

Late Problem Days

• Late days per problem rather than for the whole assignment

• Each problem is a separate Gradescope submission

• Max 2 late days per problem; limit on total # of late problem days

• You should submit anything that is done as soon as you are finished
with it

• See the syllabus for details

6

Exam dates

Midterm: Wednesday Nov 8 (possibly evening to give
you more time for the same problems)

Final Exam: Standard exam time and place:
Monday Dec 11, 2:30-4:20 here

Grading scheme
• Homework 55%

• Midterm 15-20%

• Final Exam 25-30%

7

Textbook

Kleinberg-Tardos: Algorithm Design

• International Edition just as good

• Plus supplements on website

• Worth reading

• Good for reading sequentially and learning
how to think like an algorithm designer

• Not as good for random access

• Not required

• All required content will be on slides in
lectures and quiz section

8

Introduction to Algorithms

• Basic techniques for the design and analysis of algorithms.

• Develop a toolkit of ways to find efficient algorithms to solve problems

• Prove that the algorithms are correct

• Analyze their efficiency properties

• Communicate these algorithms and their properties to others

9

On efficiency

• Originally, efficiency was important for many reasons but partly
because computers were weak

• Now we have powerful computers but

• Data has grown to be enormous

• We need even more efficient algorithms at this scale

• Computation has an energy cost and represents a significant part of
society’s total energy use

• Efficient computing is essential to reducing that cost

• Additional power is of little help for inefficient (e.g. brute force) solutions

10

Introduction to Algorithms

• Stable Matching

11

Matching Medical Residents to Hospitals

Goal: Given a set of preferences among hospitals and medical school

residents (graduating medical students), design a self-reinforcing admissions

process.

Unstable pair: applicant � and hospital � are unstable if:

• � prefers � to their assigned hospital.

• � prefers � to one of its admitted residents.

Stable assignment. Assignment with no unstable pairs.

• Natural and desirable condition.

• Individual self-interest will prevent any applicant/hospital side deal
from being made.

12

Simpler: Stable Matching Problem

Goal: Given two groups of � people each, find a "suitable" matching.

• Participants rate members from opposite group.

• Each person lists members from the other group in order of preference

from best to worst.

13

Z A CB

Y B CA

X A CB

1st 2nd 3rd

Group P Preference Profile

favorite least favorite

C X ZY

B X ZY

A Y ZX

1st 2nd 3rd

Group R Preference Profile

favorite least favorite

Stable Matching Problem

Perfect matching: everyone is matched to precisely one person from the other group

Stability: self-reinforcing, i.e. no incentive to undermine assignment by joint action.

• For a matching �, an unmatched pair �-� from different groups is unstable if � and �
prefer each other to current partners.

• Unstable pair �-� could each improve by ignoring the assignment.

Stable matching: perfect matching with no unstable pairs.

Stable matching problem: Given the preference lists of � people from each of two

groups, find a stable matching between the two groups if one exists.

14

� �

Stable Matching Problem

Q: Is matching (X,C), (Y,B), (Z,A) stable?

15

Z A CB

Y B CA

X A CB

1st 2nd 3rd

Group P Preference Profile

C X ZY

B X ZY

A Y ZX

1st 2nd 3rd

Group R Preference Profile

favorite least favorite favorite least favorite

Stable Matching Problem

Q: Is matching (X,C), (Y,B), (Z,A) stable?

A: No. B and X prefer each other.

16

Z A CB

Y B CA

X A CB

1st 2nd 3rd

Group P Preference Profile

C X ZY

B X ZY

A Y ZX

1st 2nd 3rd

Group R Preference Profile

favorite least favorite favorite least favorite

Stable Matching Problem

Q: Is matching (X,A), (Y,B), (Z,C) stable?

17

Z A CB

Y B CA

X A CB

1st 2nd 3rd

Group P Preference Profile

C X ZY

B X ZY

A Y ZX

1st 2nd 3rd

Group R Preference Profile

favorite least favorite favorite least favorite

Stable Matching Problem

Q: Is matching (X,A), (Y,B), (Z,C) stable?

A: Yes

18

Z A CB

Y B CA

X A CB

1st 2nd 3rd

Group P Preference Profile

C X ZY

B X ZY

A Y ZX

1st 2nd 3rd

Group R Preference Profile

favorite least favorite favorite least favorite

Variant: Stable Roommate Problem

Q. Do stable matchings always exist?

A. Not obvious a priori.

Stable roommate problem:

• �� people; each person ranks others from � to �� − �.

• Assign roommate pairs so that no unstable pairs.

Observation: Stable matchings do not always exist for stable roommate problem.

B

B

C

A C

A

B

D

D

D A B C

D

C

A

1st 2nd 3rd

(A,B), (C,D)  B-C unstable

(A,C), (B,D)  A-B unstable

(A,D), (B,C)  A-C unstable

19

Propose-And-Reject Algorithm

Propose-and-reject algorithm: [Gale-Shapley 1962]

Intuitive method that guarantees to find a stable matching.

• Members of one group
 make proposals, the other group � receives proposals

Initialize each person to be free.

while (some p in P is free) {

Choose some free p in P

r = 1st person on p's preference list to whom p has not yet proposed

if (r is free)

tentatively match (p,r) //p and r both engaged, no longer free

else if (r prefers p to current tentative match p’)

replace (p’,r) by (p,r) //p now engaged, p’ now free

else

r rejects p

}

20

Proof of Correctness: Termination (not obvious from the code)

Observation 1: Members of
 propose in decreasing order of preference.

Claim: The Gale-Shapley Algorithm terminates after at most �� iterations.

Proof: Proposals are never repeated (by Observation 1) and there are only �� possible proposals.

It could be nearly that bad…

General form of this example will

take �(� − �) + � proposals.

21

W

V

1st

A

B

2nd

C

D

3rd

C

B

AZ

Y

X C

D

A

B

B

A

D

C

4th

E

E

5th

A

D

E

E

D

C

B

E

B

A

1st

W

X

2nd

Y

Z

3rd

Y

X

VE

D

C Y

Z

V

W

W

V

Z

X

4th

V

W

5th

V

Z

X

Y

Y

X

W

Z

Preference Profile for P Preference Profile for R

Proof of Correctness: Perfection

Observation 2: Once a member of � is matched, they never become free;

they only "trade up.“

Claim: Everyone gets matched.

Proof:

• After some � proposes to the last person on their list, all the � in �
have been proposed to by someone (by � at least).

• By Observation 2, every � in � is matched at that point.

• Since
 = � every � in
 is also matched.

22

Proof of Correctness: Stability

Claim: No unstable pairs in the final Gale-Shapley matching �

Proof: Consider a pair �-� not matched by �

Case 1: � never proposed to �.

 � prefers �-partner to �.

 �-� is not unstable for �.

Case 2: � proposed to �.

 � rejected � (right away or later when trading up)

 � prefers �-partner to �.

 �-� is not unstable for �.

23

Summary

Stable matching problem: Given � people in each of two groups, and

their preferences, find a stable matching if one exists.

Gale-Shapley algorithm: Guarantees to find a stable matching for any

problem instance.

Q: How do we implement GS algorithm efficiently?

Q: If there are multiple stable matchings, which one does GS find?

24

Stable: No pair of people both prefer to be with each other rather than with their assigned partner

Implementation for Stable Matching Algorithms

• Input size

• � = ��� words

• �� people each with a preference list of length �

• ���
log � bits

• specifying an ordering for each preference list takes � log � bits

• Brute force algorithm

• Try all �! possible matchings

• Do any of them work?

• Gale-Shapley Algorithm

• �� iterations, each costing constant time as follows …

25

Propose-And-Reject Algorithm

Propose-and-reject algorithm: [Gale-Shapley 1962]

Intuitive method that guarantees to find a stable matching.

• Members of one group
 make proposals, the other group � receives proposals

Initialize each person to be free.

while (some p in P is free) {

Choose some free p in P

r = 1st person on p's preference list to whom p has not yet proposed

if (r is free)

tentatively match (p,r) //p and r both engaged, no longer free

else if (r prefers p to current tentative match p’)

replace (p’,r) by (p,r) //p now engaged, p’ now free

else

r rejects p

}

26

Efficient Implementation

How do we get the an �(��) time implementation?

Input: Representing members of the two groups
 and � and their preferences:

• Assume elements of
 (proposers) are numbered �, … , �.

• Assume elements of � (receivers) are numbered ��, … , ��.

• For each proposer, a list/array of the � receivers, ordered by preference.

• For each receiver, a list/array of the � proposers, ordered by preference.

The matching:

• Maintain two arrays match[�], and match’[�].

• set entry to 0 if free

• if � matched to � then match[�]=� and match’[�]=�

Making proposals:

• Maintain a list of free proposers, e.g., in a queue.

• Maintain an array count[�] that counts the number of proposals already made by
proposer �.

27

Efficient Implementation

Rejecting/accepting proposals:

• Does receiver � prefer proposer � to proposer �′?

• Using original preference list would be slow

• For each receiver, create inverse of preference list of proposers.

• Constant time access for each query after �(�) preprocessing per

receiver. �(��) total preprocessing cost.

for i = 1 to n

inverse[pref[i]] = i

pref

1st

8

2nd

7

3rd

3

4th

4

5th

1 5 26

6th 7th 8th�

inverse 4th 2nd8th 6th5th 7th 1st3rd

1 2 3 4 5 6 7 8�

� prefers proposer 3 to 6

since inverse[3] = 2 < 7 =inverse[6]

28

Proposer 3 or proposer 6 ?

Propose-And-Reject Algorithm

Propose-and-reject algorithm: [Gale-Shapley 1962]

Intuitive method that guarantees to find a stable matching.

• Members of one group
 make proposals, the other group � receives proposals

Initialize each person to be free.

while (some p in P is free and hasn't proposed to everyone in R) {

Choose some such free p in P who hasn’t proposed to everyone in R

r = 1st person on p's preference list to whom p has not yet proposed

if (r is free)

tentatively match (p,r) //p and r both engaged, no longer free

else if (r prefers p to current tentative match p’)

replace (p’,r) by (p,r) //p now engaged, p’ now free

else

r rejects p

}

29

