
Homework 8: Hardness
Be sure to read the grading guidelines and style guidelines. Especially to see the suggested format for describing
algorithms.

We sometimes describe how long are justifications or proofs are. These lengths are intended to help you estimate
how much detail we’re expecting, you should not take those estimates as hard length-limitations.

Our solutions for any individual problem will fit in approximately one page or less.

You are allowed (and encouraged!!) to collaborate with each other. Brainstorming is much easier to do in a group
than alone! But you must follow the collaboration policy (which includes needing to write your submission on your
own).

You will submit to Gradescope; we will have a different box for each problem, so please give yourself extra time to
submit.

1. Multiple choice [10 points]

Answer this question directly on Gradescope. For each of the following questions answer True or False or Open.

(a) There exists a problem in P that is not in NP.

(b) There is an algorithm for 3SAT that runs in polynomial time.

(c) If there is an algorithm for 3Color that runs in polynomial time then there is an algorithm for 2Color that runs
in polynomial time.

(d) 3SAT polynomial time reduces to 2Color.

(e) If P 6= NP there does not exist a polynomial-time algorithm for Vertex-Cover.

(f) If A ≤P B, P 6= NP, and B is NP-hard then A is NP-hard.

(g) If A ≤P B and A is NP-hard then B is NP-hard.

2. Test and you can find [25 points]

Suppose that you had an algorithm C that on input any (G, k) that could correctly answer the Vertex-Cover problem.
That is, on input (G, k) for G an undirected graph and k an integer, it correctly answers YES if undirected graph G
has a vertex cover of size at most k and answers NO if there is no such cover. Show that on any input (G′, k′), with
a polynomial amount of work and a polynomial number of calls to C you can actually find a vertex cover W of G′ of
size at most k′ if one exists and answer FAIL otherwise.

1



3. A game of darts [25 points]

At an amusement park there is a dart game that has overlapping regions, each enclosed by its own colored line
marked on the wall. Contestants win at the dart game if they can toss the darts at the wall and land at least one dart
inside every marked region. A single dart may land inside multiple regions, but they only get to throw k darts.

We consider an abstract version of the dart game, which is a discrete variant with only n places, numbered 1 through
n, where a dart could land, and each of the m regions, R1, . . . , Rm, is just an arbitrary subset of {1, . . . , n}. The
Abstract-Dart-Game problem asks whether there is a set of at most k spots among {1, . . . , n} so that if darts land in
all those spots then every region would contain a dart.

Prove that the Abstract-Dart-Game problem is NP-complete.

4. Breaking up those intervals [25 points]

This problem is a variant of the Interval Scheduling problem that we saw how to solve with a greedy algorithm. In
this version of the problem, there is a single resource available for scheduling, but instead of requiring the resource
for the whole time between the start time si and finish time fi, the request has scheduled breaks during which
time other jobs may use the resource. That is, though job i has an overall start time of si and finish time fi, it may
have a break that starts at some time bi1 and ends a ei1 and, after returning for a while, might have a second break
beginning at some bi2 and ending at ei2, etc. In general we would have si < bi1 < ei1 < bi2 < ei2... < fi and no
bound on the number of breaks.

For example, if we had two requests, one beginning on hour 0 and one beginning on hour 1, each of which repeatedly
runs for an hour and then takes an hour break, then the two requests would be compatible with each other and
could both be scheduled.

Assume that all start, finish, and break times for all requests are integers and the total time range is between 0
and T . The Interval-Scheduling-with-Breaks Problem is to determine. given a collection of descriptions of n requests
with breaks and an integer k, whether or not it is possible to schedule at least k of the requests on the single
resource.

Prove that the Interval-Scheduling-with-Breaks problem is NP-complete.

5. Round numbers [Extra Credit]

In this problem, as input you are given anm×n array A of real numbers for which you are promised that the sum of
each row and the sum of each column is an integer. Your goal is to find a way of rounding each matrix entry up to the
closest integer or down to the closest integer while maintaining all the row and column sums. More precisely, give
a polynomial-time algorithm that will produce a new m× n integer array B such that B[i, j] is dA[i, j]e or bA[i, j]c,
and each row sum or column sum in B is equal to the corresponding sum in A.

For example, if the input is the array on the left, your algorithm could output any of the arrays on the right.

0.4 0.1 1.5
0.6 1.9 0.5

⇒ 1 0 1
0 2 1

or 0 0 2
1 2 0

or 0 1 1
1 1 1

2


	1 Multiple choice [10 points]
	2 Test and you can find [25 points]
	3 A game of darts [25 points]
	4 Breaking up those intervals [25 points]
	5 Round numbers [Extra Credit]

