
Homework 6: Dynamic Programming andNetwork Flow
Be sure to read the grading guidelines and style guidelines. Especially to see the suggested format for describing
algorithms.

We sometimes describe how long are justifications or proofs are. These lengths are intended to help you estimate
how much detail we’re expecting, you should not take those estimates as hard length-limitations.

Our solutions for any individual problem will fit in approximately one page or less.

You are allowed (and encouraged!!) to collaborate with each other. Brainstorming is much easier to do in a group
than alone! But you must follow the collaboration policy (which includes needing to write your submission on your
own).

You will submit to Gradescope; we will have a different box for each problem, so please give yourself extra time to
submit.

1. Try the algorithm by yourself! [10 points]

Execute the Ford-Fulkerson algorithm on the following graph. When there are multiple augmenting paths available,
pick the shortest one (that is the one with the fewest edges). If multiple shortest paths are available, choose the one
which increases the flow the most.

Remark: with this rule for choosing the augmenting path, you are actually running the Edmonds-Karp algorithm!).

At the end, you’ll submit the following on Gradescope:

• the maximum flow (i.e., the amount of flow on each edge).

• The value of the maximum flow.

• The minimum cut (this should be formatted as two sets of vertices)

• The capacity of the minimum cut.

d

e

s a b c t

8

5

5

4

6 2 5

5

9

1 2

2

4

2. Cheap Field Fencing [25 points]

You are helping out a hobby farmer in a very flat area who has a property with n very heavy-duty fence-posts sunk
in concrete on the perimeter of the property at locations given by coordinates v1 = (x1, y1), . . . , vn = (xn, yn) They
have installed straight-line fencing between adjacent fence-posts vi and vi+1 for every i as well as between vn and
v1. Wherever you are inside the fenced off area you can see every bit of the exterior fencing.

Your hobby farmer friend wants to grow many different kinds of crops and raise many different kinds of animals
that they need to separate from each other in different portions of their property, but they don’t want to add any
more heavy-duty fence-posts or use any more fencing than is absolutely necessary.

You get excited when you realize that you can create n − 2 different zones that are all 3-sided simply by running
straight-line fences inside the field between pairs of existing vi and vj . (Of course those fences can’t cross.)

1



When you think some more, you realize that there are many possible ways to do it and some of them result in using
much less fencing than others:

This gets you even more excited because you realize that you can apply the dynamic programming ideas you learned
in your algorithms course to figure out what one would use the least fencing! In particular, you start wondering
what the best choice of the third vertex vk would be for the 3-sided region that has the 2 other vertices v1 and vn.
This gives you some ideas of how to proceed.

Apply all the standard steps associated with dynamic programming to get an efficient algorithm to the find shortest
length of fencing necessary.

3. Risky Business [25 points]

Suppose that you have a flow network G with source s and sink t.

This problem is about understanding something more that will help to narrow down the nodes/edges that might be
potentially involved in bottlenecks in such a network.

We say that a node v is:

• upstream of any st-bottleneck iff for every minimum st-cut of G, v is on the side of the cut that includes s,

• downstream of any st-bottleneck iff for every minimum st-cut of G, v is on the side of the cut that includes t,
and

• risky otherwise.

Only the edges that touch risky nodes are of potential concern with respect to bottlenecks.

Give an algorithm that runs in time within a constant factor of a single a maxflow computation that classifies every
node of G as either upstream, downstream, or risky.

2



4. Get Out! [25 points]

In emergency planning we often need to set up escape routes ahead of time in case of a disaster. In this problem
you are given a directed graph G = (V,E) representing a set of possible 1-way roads. Each node in V is either a
populated node in P , a safe node in S, or an intersection node in I. (These are disjoint sets of nodes whose union
is V .)

(a) An escape plan consists of a collection C of directed paths in G such that

– each path in C begins at a node in P and ends at a node in S,

– for each node u ∈ P , there is exactly one path in C that begins at u, and

– no two paths in C share any edges of G.

Give a polynomial-time algorithm to determine whether or not an escape plan exists.

(b) Suppose also that every node v not in P has a capacity cv. A congestion-free escape plan is an escape plan in
which

– the directed path beginning at node u ∈ P does not go through any other populated node, and

– for every node v not in P , the total number of paths containing v is at most cv.

Show how to determine in polynomial-time whether or not such a congestion-free escape plan exists and
produce such a plan if one does.

5. The most likely path [Extra credit]

Suppose that you have a set S of possible labels and are given a directed graph G = (V,E) with a designated start
node s with each edge (u, v) having a label L(u, v) from S. (Note that multiple edges out of a node may have the
same label.) In addition, each edge has a probability p(u, v) ≥ 0 of being taken when at u. In other words, for every
u ∈ V , ∑

v: (u,v)∈E

p(u, v) = 1.

The probability of taking a path beginning at the start node s is the product of the probabilities labeling its edges.
Produce an efficient algorithm that takes as input the graph G with its edge labels and edge probabilities and a
sequence of labels a1, . . . , at and determines the most likely path beginning at node s that is consistent with the
sequence of labels (and determine the probability of that path). You can assume that arithmetic operations on real
numbers have cost 1.

3


	1 Try the algorithm by yourself! [10 points]
	2 Cheap Field Fencing [25 points]
	3 Risky Business [25 points]
	4 Get Out! [25 points]
	5 The most likely path [Extra credit]

