
Homework 5: Dynamic Programming
Be sure to read the grading guidelines and style guidelines. Especially to see the suggested format for describing
algorithms.

We sometimes describe how long are justifications or proofs are. These lengths are intended to help you estimate
how much detail we’re expecting, you should not take those estimates as hard length-limitations.

Our solutions for any individual problem will fit in approximately one page or less.

You are allowed (and encouraged!!) to collaborate with each other. Brainstorming is much easier to do in a group
than alone! But you must follow the collaboration policy (which includes needing to write your submission on your
own).

You will submit to Gradescope; we will have a different box for each problem, so please give yourself extra time to
submit.

1. Asymmetric Edit Distance [10 points]

For this problem, we’re going to redefine edit distance as the smallest sum of penalties for the operations below to
convert one string into another but our definition won’t be symmetric since deleting a character will be less of a
penalty than inserting one:

• 2 points for deleting a character from the first string x.

• 3 points for inserting a character in the first string x.

• 4 points for substituting a character.

(In class we had the same penalty δ for unaligned characters in either string).

(a) Update the recurrence to calculate the new edit distance

(b) Build the table to evaluate the recurrence and state the distance between the strings “space” and “paced”

2. Dynamic Pastries [25 points]

Recall the following set-up for Q1 on Homework 4:

Paul’s TAs want pastries during the weekly meetings, and to feed all of his TAs, he needs to purchase exactly n total
pastries. At the bakery from which he buys his pastries, pastries come in boxes that fit differing numbers of pastries
(e.g., donuts come in a box that fits a dozen, croissants only come in a box that fits five, etc.) but you can always
buy a chocolate cake that fits in a single box. Paul is interested in finding the minimal number of boxes he will have
to carry, while getting exactly n total pastries.

Minimum Pastry Boxes
Input: An array P [] containing the pastry ordering quantities. You may assume P contains only positive ints,
that P [0] = 1, and that P [i] < P [j] for all i < j. And a positive integer n.
Output: The minimal number of boxes required to ensure exactly n pastries in the order.

On Homework 4, you proved that a greedy algorithm did not produce the minimum number of pastry boxes.

Design a dynamic programming algorithm that does produce the minimum number of pastry boxes given that there
are p possible kinds of pastries to choose from, using the following steps:

(a) Define, in English, the quantities that you will use for your recursive solution.

(b) Given a recurrence relation for the quantities you have defined.

1



(c) Argue for the correctness of your recurrence relation.

(d) Describe the parameters for the subproblems in your recursion and how you will store their solutions.

(e) In what order can you evaluate them iteratively?

(f) Write the pseudocode for your iterative algorithm

(g) Analyze the running time of your algorithm in terms of n and p.

3. It’s Tough toMake Predictions, Especially About the Future [25 points]

That piece of Yogi Berra wisdom doesn’t bother you because you happen to know someone who can make such
perfect predictions in a particular narrow domain: Lord of the Rings memorabilia. In particular they know the
future prices of a special one-of-a-kind piece of Lord of the Rings memorabilia: the one ring to rule them all. In
particular, suppose that you know for each of the next n days, what the price pi in dollars of the one ring will be
on day i. You aren’t interested in the power of the ring (that doesn’t seem to be healthy for anyone) but you are
interested in making money from buying and selling the ring.

Suppose that on each day you can either buy the ring (if you don’t have it) or sell the ring (if you do). Each time you
sell the ring there is a fixed commission of c dollars for the sale that you need to pay. (When you buy it, you don’t
pay commission.)

We’ll assume that the reason that you’ve been let in on this secret future knowledge is that you have at least maxni=1 pi
dollars so you can make the purchases without needing to borrow money.

Design an efficient dynamic programming algorithm (running in O(n) time for full credit but any polynomial-time
algorithm can get almost all the credit) that, armed with the knowledge of the future prices, can tell you what your
maximum total profit from buying and selling the one ring (possibly multiple times) can get you. (You don’t actually
need to produce the sequence of purchases and sales, just produce the maximum profit number in dollars.)

As usual complete the following components for your solution:

(a) Define, in English, the quantities that you will use for your recursive solution.

(b) Given a recurrence relation for the quantities you have defined.

(c) Argue for the correctness of your recurrence relation.

(d) Describe the parameters for the subproblems in your recursion and how you will store their solutions.

(e) In what order can you evaluate them iteratively?

(f) Write the pseudocode for your iterative algorithm

(g) Analyze the running time of your algorithm.

2



4. Formatting Paragraphs [25 points]

In typesetting systems, like the LaTeX system in which this problem set is formatted, the input for paragraphs is given
in blocks of plain text consisting of words and punctuation separated by blanks and new lines. Formatted paragraphs
are produced by laying out this text using fixed maximum width L per line by figuring out where to break each line
of text and continue the paragraph on the next line. An innovation of the TeX system on which LaTeX is based was to
phrase paragraph formatting as an optimization problem. which produced superior paragraph formatting and has
been adopted by many other word processing systems.

We consider a simplified version of this optimization problem in which words are considered indivisible units of fixed
width (no hyphenation) and punctuation is considered part of the word it is next to.

In our version, the input consists of a sequence of n positive real numbers w1, . . . , wn representing the lengths of that
the words would occupy in a given font in order, together with a positive real number b representing the minimum
width of a blank in that font, and another real number representing the allowed width L of each line. (You can
assume that each wi ≤ L.)

A legal formatting for this text consists of a sequence of integers 0 = e0 < e1 < . . . < ek = n for some k, where
the i-th line of the paragraph consists of the words numbered ei−1 + 1, . . . , ei separated by blanks. (That is, ei is
the number of the word that ends the i-th line in the paragraph and the number of blanks in a line is 1 less than
the number of words in it.) It is required that no line be longer than L, so if a line consists of words t through u
then

• wt + b+ wt+1 + b+ ...+ b+ wu ≤ L.

• The slack of this line is the difference between the left and right sides of this inequality.

An optimum formatting for this input is one that minimizes the sum of the squares of the slacks of all but the last
line since (as is usual in paragraph formatting) the last line is simply left-justified and we don’t care how long it is
compared to the other lines.

Give an efficient dynamic programming solution that finds an optimal formatting from the inputs w1, . . . , wn, b, L,
as usual according the steps for dynamic programming:

(a) Define, in English, the quantities that you will use for your recursive solution.

(b) Given a recurrence relation for the quantities you have defined.

(c) Argue for the correctness of your recurrence relation.

(d) Describe the parameters for the subproblems in your recursion and how you will store their solutions.

(e) In what order can you evaluate them iteratively?

(f) Write the pseudocode for your iterative algorithm

(g) Analyze the running time of your algorithm.

5. A Genealogy Project [Extra Credit]

You are not required to submit attempts at extra credit problems (they do not count toward the dropped/counted problems
at the end of the quarter). They will havemuch smaller effects on grades than themain problems, so we do not recommend
attempting them until you’ve done all the other problems on the assignment. At the end of the quarter, after determining
grade breaks, we will add in extra credit points.

In this problem you are given as input a rooted binary tree T = (V,E) with each leaf w labelled by a symbol sw from
some fixed alphabet A, as well as a two-dimensional non-negative array of costs indexed by pairs of elements of A

3



such that c[s, t] is the cost of changing symbol s to symbol t and this satisfies c[s, s] = 0 and c[s, t] = c[t, s] for all s, t
in A.

Design an efficient algorithm to label each internal node v of the binary tree T by a symbol sv from A so as to
minimize the sum over all (u, v) in E of c[su, sv].

(This kind of problem arises in computational biology when one wishes to assess a potential evolutionary tree and
reconstruct properties of potential ancestral species given this tree. In this case each ”symbol” might be a very short
sequence - or even just a letter - of DNA or protein that might at a given position within a longer sequence, and c[s, t]
is the cost of the evolutionary change in going from s to t.)

4


	1 Asymmetric Edit Distance [10 points]
	2 Dynamic Pastries [25 points]
	3 It's Tough to Make Predictions, Especially About the Future [25 points]
	4 Formatting Paragraphs [25 points]
	5 A Genealogy Project [Extra Credit]

