Homework 3: Greedy

Be sure to read the grading guidelines and style guidelines. Especially to see the suggested format for describing
algorithms.

We sometimes describe how long are justifications or proofs are. These lengths are intended to help you estimate
how much detail we're expecting, you should not take those estimates as hard length-limitations.

Our solutions for any individual problem will fit in approximately one page or less.

You are allowed (and encouraged!!) to collaborate with each other. Brainstorming is much easier to do in a group
than alone! But you must follow the collaboration policy (which includes needing to write your submission on your
own).

You will submit to Gradescope; we will have a different box for each problem, so please give yourself extra time to
submit.

1. Find a Counterexample [10 points]

For a graph G = (V, E), aset S C V a “vertex cover” if V(u,v) € E: (u € SV v € S). In English, a vertex cover is
a subset of the vertices so that every edge has at least one of its endpoints in the set.! We are usually interested in
small vertex covers (since V is always a vertex cover). Consider the following greedy algorithm for finding a small
vertex cover:
function GREEDYVERTEXCOVER (G = (V, E))
S+ o
while £ is not empty do
Let u be the highest degree vertex > not counting deleted edges
Add u to S
Delete all edges incident to u from E > we know these are covered by u and can ignore them

return S

Prove that this algorithm is incorrect by counterexample. Specifically, give an example of a graph on which this
algorithm does not produce the smallest vertex cover. Show both the vertex cover that the algorithm finds and a
smaller cover.

2. Opening up the STP [25 points]

Every summer on a weekend in July there is a bike ride from Seattle to Portland (the STP) beginning at the Montlake
parking lot and ending in Portland. Registered finishers get a T-shirt when they arrive at the end.

You have been asked to figure out how to open up the ride to more participants who do not have to register for the
whole distance. Instead, participants only need to register with a start milepost and end milepost (each a decimal
number) along the route and, instead of getting finishing T-shirts, participants can pick up STP logo participant
water bottles at some station along their route.

Your job is to set up a number of stations so that you can hand out water bottles to every participant at some point
along their registered portion of the STP.

Describe an efficient algorithm that, given the start and finish mileposts of n registrants, finds a sequence of mileposts
for stations that minimizes the number of stations that you have to set up between Seattle and Portland. (It is OK for
there to be more than one station along someone’s route; each participant will be told which of the stations along
their route they can collect their water bottle.)

You should be able to do this using O(nlogn) time; of course you need to prove your claims.

1The name is somewhat counter-intuitive; the set contains vertices — we say “the vertices cover the edges” so it’s the edges that are covered
(by the vertices) in a vertex cover.



3. The Waiting is the Hardest Part [25 points]

You are in the business of renting a high end video-conferencing studio for those who are very tired of Zoom and
want much better production values. Each reservation request you receive for your studio is for a fixed duration ¢,
in hours and involves p; people participating. You happen to know that no person participates in more than one
reservation request.

You want to schedule all of these requests at your studio, which can only handle one request at a time, in the best
way possible according to the following criterion: Each of the people participating wants to have their respective
conference over as soon as possible so you want to schedule them to minimize the total person-hours that participants
need to wait until their video conference is finished. If you think of the start of your schedule as time 0 and have
scheduled request i to finish at time f;, the total person-hours of waiting for that request would be p; f;.

Design an efficient algorithm that takes as input n pairs consisting of the duration ¢; and number of participants
p; for the i-th request and produces a schedule that minimizes the total person-hours of waiting summed over all
requests.

4. Beans [25 points]

As the lucky millionth customer of your local bean store, the owners have allowed you to fill up a bucket with any
beans for free. They give you a comically-large bucket, so you don’t need to worry about volume, but weight may be
a problem: you decide you’ll only be able to carry up to b pounds of beans. At the bean store, there are n different
types of beans to choose from and bean i costs ¢; dollars per gallon and weighs w; pounds per gallon. Unfortunately,
because of supply chain issues, the store is running low on beans. Each type has s; gallons currently in stock. Note
that since you're dealing with beans, you can fill your bucket with non-discrete quantities of beans (e.g., 0.5 gallons
or 1/2 gallons). You wish to fill this bucket with the highest cost combination of beans that won’t go over your weight
limit.

As former Algorithms students themselves, the store owners clue you in that a greedy algorithm might work. In this
problem you will describe some “greedy rules” to summarize algorithm ideas. A “greedy rule” is a clear description
someone could follow to select your beans (e.g., an ordering of bean types and rule for how much to include of
each).2

(@) Describe a greedy rule that would not produce the optimal value. Present a counterexample where the greedy
rule chooses a suboptimal assortment of beans, also give both the selection made by the greedy algorithm and
the better selection.

(b) Describe a greedy rule that would produce the optimal value. Present a proof showing that the greedy algorithm
with the described rule always chooses an optimal assortment of beans.

2For an example: “Sort the edges in increasing order and add an edge as long as it doesn’t create a cycle” is a greedy rule for MSTs.



	1 Find a Counterexample [10 points]
	2 Opening up the STP [25 points]
	3 The Waiting is the Hardest Part [25 points]
	4 Beans [25 points]

