Homework 1: Stable Matchings

Be sure to read the grading guidelines and style guidelines in the Homework Guide. Especially see the suggested
format for describing algorithms.

We sometimes describe how long are justifications or proofs are. These lengths are intended to help you estimate
how much detail we’re expecting; your proofs are allowed to be longer.

You are allowed (and encouraged!!) to collaborate with each other. Brainstorming is much easier to do in a group
than alone! But you must follow the collaboration policy (which includes needing to write your submission on your
own).

You will submit to Gradescope; we will have a different box for each problem, so submit as you complete each
problem.

1. Favorites [10 points]

Is it true that in every stable matching, there is some agent getting their first choice?

If so, give a proof (be sure to show the claim for every stable matching!).
If not, give a counter-example (be sure to justify that the matching is stable!).

2. Stable Matching Modeling [25 points]

In this problem you will practice performing a reduction. We’ll spend more time on reductions later in the quarter —
your goal with a reduction is to use code written for a previous problem (say a library function someone else wrote)
to solve a new problem without editing or rewriting the library. While you cannot alter the library, you will need
to do some pre- and/or post-processing to make the library function appropriate for your use-case.

You are given a function BasicStableMatching, which you will use to solve a new problem.

BasicStableMatching

Input: A set of 2k agents in two groups of k agents each. Each agent has an ordered preference list of all &
members of the other group,.

Output: A stable matching among the 2k agents.

Notice, you don’t know how the BasicStableMatching function works. Maybe it’s running Gale-Shapley. But maybe
it isn’t! And even if it is running Gale-Shapley, you don’t know who is proposing. You do know, though, that the
output is correct (i.e. it is stable) even if you don’t know which stable matching is output.

Now, your task. You have a set of n job applicants and m jobs available. Both the job applicants and the companies
offering the jobs have standards. Each job applicant can declare some (or none, or all) of the jobs as “unacceptable” —
that is, they would rather have no job (i.e., not be matched at all) than be matched to an unacceptable job. Similarly,
every job can declare some (or none, or all) of the applicants “unacceptable”.

Every applicant and job would prefer to be matched to any acceptable option than to be left unmatched. In this
context, call an assignment “stable” if:

* No applicant is matched to a job they declare unacceptable.
* No job is matched to an applicant they declare unacceptable.

* There is no unmatched job-applicant pair that both declare the other acceptable and who both prefer each
other to their current state.

Note that we do not require a perfect matching in this context to have a matching be stable -— now that we have
unacceptable pairings and differing numbers of applicants and jobs, we may leave some agents unmatched.

(@) Given n job applicants and m jobs, along with all of their preference lists and all their decisions as to whether
other agents are unacceptable, describe how to use BasicStableMatching to find a stable matching. For this
problem, we do not care about the exact data structures you use to implement the lists — you may assume you



start with 2-D arrays, or inverse arrays, or ordered lists, or any other reasonable representation. Similarly, you
can assume that BasicStableMatching accepts whatever representation you prefer. We want you to focus on
the big idea of how the library is useful to you, not the nitty-gritty details of converting between 2D arrays
and ArrayLists.

(b) Prove that you will output a stable assignment.

(c) What is the running time of your algorithm? Give a ©() bound and justify with 1-3 sentences. To describe the
running time, you may use n and m as defined above.
For the purposes of the analysis, assume that on an input with & riders and & horses, BasicStableMatching
runs in time © (kQ) (but your final answer cannot include k, it’s not a real real variable in this problem).

3. Overlapping Trees

Let G = (V, E) be an undirected graph. Call a non-empty set S of vertices travelable! if for all u,v € S there is a
path u,ws, ..., wg,v where all w; € S (i.e., you can get from u to v without ever using a vertex outside S; it’s ok if
u = v or there are no w;).

Call a graph cool? if for all sets A, B, C of travelable vertices, the following implication holds

[ANBAOGANANC#BABNC#2]—-ANBNC #@

That is, if every pair of the travelable sets overlaps, then they all share at least one vertex.

We strongly recommend that you draw a few example graphs and overlapping travelable sets to make sure you
understand the definitions and what the question is asking.

(@) Give an example of a graph that is not cool. Justify that it is not cool by giving three travelable sets that make
the implication false. (Hint: read part b before trying this part). [5 points]

(b) Prove by induction that if G is a tree then G is cool.
You must use induction for this problem, and you must really use a smaller version of the problem inside the
original problem in your inductive step. Your inductive step must be a direct proof (which means you may not
use proof by contradiction for the main argument).
If your inductive step never considers the case that the implication is vacuous, you’re probably missing some-
thing!

Hint: You can use the fact from section that every tree has a degree-one vertex.
Hint: If you want a shorter way to refer to the hypothesis of the implication, we say that “A, B, C pairwise
intersect.” [20 points]

1Sadly, not a real term.
2Very sadly, this is not a real term either. But all trees are cool.



	1 Favorites [10 points]
	2 Stable Matching Modeling [25 points]
	3 Overlapping Trees

