1 Dijkstra’s Algorithm

Theorem 1. Let T be the spanning tree found by Dijkstra(s). Then, $d_G(s, u) = d_T(s, u)$ for all u.

Proof:
- Let S_k be the set S in the algorithm before step k.
- Let induction statement $P(k)$ be “$d_T(s, u) = d_G(s, u)$ for all $u \in S_k$”

Base case $k = 1$:
- $S_1 = \{s\}$. $d_T(s, s) = 0 = d_G(s, s)$.

Induction step:
- Let v be the new vertex in S_k.
- Let P be the path from s to v using the tree and the addition edge.

// The idea: Consider a shortest path P^* from s to v. By the choice of the algorithm, P is the shortest path exiting the set S_{k-1}. So, $c(P^*) \geq c(P)$.
- Let P^* be some shortest path from s to v.
- Let (u, v) be the edge that P exit S_{k-1}.
- Let (x, y) be the first edge that P^* exit S_{k-1}.
- Note that

\[
\begin{align*}
 c(P^*) &\geq d_G(s, x) + c(x, y) \quad \text{(it is a subpath of P^*)} \\
 &= d_T(s, x) + c(x, y) \quad (x \in S_{k-1}) \\
 &\geq d_T(s, u) + c(u, v) \quad \text{(by the choice of algo)} \\
 &= c(P).
\end{align*}
\]

2 Quiz

Algorithm:
- Run dijkstra to find a shortest path from s to t with the new length $\tilde{l}_e = l_e + \frac{1}{n}$.

Output the shortest path dijkstra gives.

Runtime:
- $O(m + n \log n)$ due to dijkstra.

Correctness:
- Claim: Any shortest path for the distance \tilde{l} is a shortest path for the distance l.
- Proof: Any shortest path has length at most $n - 1$. So, we at most add $\frac{n-1}{n} < 1$. Since all the costs are integer, any shortest path for the distance \tilde{l} is a shortest path for the distance l.

Now, note that any shortest path in l with less length is shorter in \tilde{l}. So, the algo correctly outputs a shortest path with minimum length.