
CSE 421 Lecture 4

1 Testing Bipartiteness

Theorem 1. We can test if a graph with m edges and n vertices is bipartite in O(m+ n) time.

Proof:
Since we can test bipartiteness separately in each connected component, we assume the graph is connected.

Algorithm:

• Run BFS starting at any vertex.

• If there is any edge in the graph that joins two vertices of the same layer,

� Output non-bipartite.

• Else

� Output bipartite.

.
Runtime:
O(m+ n). The bottleneck is BFS.

Correctness:
Case 1: The algorithm outputs �bipartite�.
Color nodes on even layer blue, odd layer red.
Since no edge on the same layer (assumption) and all edges join nodes on adjacent layers (property of BFS),

the 2 color we gives is valid.
Case 2: The algorithm outputs non-bipartite.
There is an edge xy connecting two nodes on the same layer.
Let z be their lowest common ancestor.
Note that the path x→ y → z → x forms an odd cycle.
However, there is no way to have 2 coloring for odd cycle.
Hence, the whole graph does not have 2 coloring.

Corollary 2. A graph is bipartite if and only if it has no odd cycle.

2 Non-Tree Edge in DFS

Lemma 3. For every undirected edge {x, y}, then one of x or y is an ancestor of the other in the tree.

Proof:
Suppose x is visited �rst.
Therefore, DFS(x) was called before DFS(y).
Case 1: {x, y} is in the DFS tree and that means y is a child of x.
Case 2: y was visited when the edge {x, y} was examined during DFS(x). In this case, y is a descendant of x.

1



3 Topological order

Theorem 4. G has a topological order if and only if G is a DAG.

We split the proof into few parts. First we prove DAG is necessary.

Lemma 5. If G has a topological order, then G is a DAG.

Proof:
Our goal is to prove G does not has a directed cycle.
To prove by contradiction, assume there is a directed cycle C.
We name the vertices of G by some topological order 1, 2, 3, · · · , n
Let i be the lowest-indexed vertex in C. Let j be the vertex before i.
Then, (j, i) is a directed edge with i < j. This contradicts to the topological order.

To prove any DAG has a topological order, we �rst need to �nd some starting vertex (aka course without
prerequisite)

Lemma 6. If G is a DAG, G has a source (vertex with no incoming edges).

Proof: (by contradiction)
Suppose G is a DAG with no source.
Pick any vertex v.
Since v is not a source, there is an income edge (u, v) and we can follow the edge backward to u.
Repeat walking backward until we visit a vertex w twice.
Let the walk be w → · · · → w → · · · → v.
The part w → · · · → w is a directed cycle. (Contradiction)

Lemma 7. If G is a DAG, G has a topological order

Proof: (by induction on n)
Statement P (n): Every DAG with n vertices has a topological ordering
Base case n = 1: True
Induction:
Given a DAG G with n vertices. Let v be a source.
Note that G− {v} is a DAG.
By hypothesis, G− {v} has a topological ordering π.
Hence, (v, π) is a topological order for G (because v has no incoming edge).

2


