EXERCISE 1

Algorithm.
e We define a new graph G as follows:
— Add vertices s* (super source) and ¢ (sink)
— For each v € V.
x Add vertices v1,vo, -+ , V7.
* Add edges (v;,v;+1) with capacity s(v) for all 4 € {1,2,--- ,T —1}.
* Add edges (v;,t) with capacity d(v,4) for all i € {1,2,--- ,T}.
— For each i € {1,2,--- ,T},
* Add edges (s*, s;) with capacity C.
— For each (u,v) € E
* Add edges (u;,v;) for all ¢ € {1,2,--- ,t} with capacity c(u,v)
e Run maximum flow algorithm on G from s* to t.
e Return true if the flow value is Z?:l > vey d(v, ).

Runtime. Since maximum flow problem can be solved in polynomial time, and the new graph has O(nT) vertices
and O(mT) edges, our algorithm has runtime polynomial in n,m and T

Correctness. Let K be the sum of the fulfilled demand. We claim that the maximum of K is exactly equals to
the maximum flow value of the graph G from s* to t. If the claim is true, the algorithm correctly outputs true if
all demand can be satisfied.

Note that

e The flow on (s*,s;) denote the water produced on day .

e The flow on (u;,v;) denote the flow on (u,v) on day i.

e The flow on (v;,v;41) denote the amount of water stored on day i.
e The flow on (v;,t) denote the fulfilled demand on v on day .

Any s* —t flow on G corresponds to a water schedule on day 1 to day 7. On the other hand, any water schedule
on day 1 to day T can be represented by a s* — ¢ flow on G. Furthermore, the fulfilled demand is exactly the sum
of flow to t, which equals to the flow value. This proves the claim.

EXERCISE 2

Algorithm.
o Let f=0
e While s,? is connected in Gy
— Run Sally’s algorithm on Gy to obtain dy.
— Set f <« f+ ;.
e Return f.

Runtime. Let OPT(G) be the maximum s — ¢ flow value in G. Let val(f) be the flow value of f. We first prove
the following:

Lemma 1. We have OPT(G) = OPT(Gy) + val(f).
Proof. For any s —t flow 67 in Gy, f + dy is a s — ¢ flow in G. Hence, OPT(G) > val(f + ;) = val(f) + val(dy).

In particular, this shows
OPT(G) > val(f) + OPT(Gy).
On the other hand, by maxflow mincut theorem, there is a s — ¢ cut (A4, B) on G with capg, (4, B) = OPT(Gy).
Using the definition of cap, the definition of Gy and the flow value lemma
capg(4, B) = capg, (4, B) + val(f).
Hence, we have
OPT(G) < caps(A, B)
= capg, (A, B) + val(f)
= OPT(Gy) + val(f).



Let f*) be the flow at the beginning of the k-th step. By the guarantee of the Sally’s algorithm, we have
k 1
val(0§") > 5 OPT(C o).
Using this and the previous lemma, we have

OPT(G jxs1)) = OPT(G ) — val(8})
1
S §OPT(Gf(k))

Hence, the optimum value of the residual graph halves every step. Initially, G;1) = G with optimum value F'.
Hence, in O(log F') iterations, the optimal value is < 1. Since the Sally’s algorithm outputs an integer flow, we have
OPT(G ) is integer for all k. Hence, in O(log F') iterations, OPT(G ;) becomes 0 and maxflow mincut theorem
shows that s — ¢ is disconnected in G yx).

Since Sally’s algorithm takes O(m) time and since there are O(log F') iterations, the total runtime is O(mlog F').

Correctness. Since 0y is s — ¢ flow on Gy, f + 05 is s —t flow on G. Hence, the algorithm outputs a s — ¢
flow. Since the algorithm only terminates when s — ¢ is disconnected in Gy, maxflow mincut theorem shows that
OPT(Gy) = 0. By the previous lemma, this shows the flow is a maxflow (val(f) = OPT(G)).



