
Exercise 1

Algorithm.

• We de�ne a new graph G̃ as follows:
� Add vertices s∗ (super source) and t (sink)
� For each v ∈ V .

∗ Add vertices v1, v2, · · · , vT .
∗ Add edges (vi, vi+1) with capacity s(v) for all i ∈ {1, 2, · · · , T − 1}.
∗ Add edges (vi, t) with capacity d(v, i) for all i ∈ {1, 2, · · · , T}.

� For each i ∈ {1, 2, · · · , T},
∗ Add edges (s∗, si) with capacity C.

� For each (u, v) ∈ E
∗ Add edges (ui, vi) for all i ∈ {1, 2, · · · , t} with capacity c(u, v)

• Run maximum �ow algorithm on G̃ from s∗ to t.

• Return true if the �ow value is
∑T

i=1

∑
v∈V d(v, i).

Runtime. Since maximum �ow problem can be solved in polynomial time, and the new graph has O(nT ) vertices
and O(mT ) edges, our algorithm has runtime polynomial in n,m and T .

Correctness. Let K be the sum of the ful�lled demand. We claim that the maximum of K is exactly equals to

the maximum �ow value of the graph G̃ from s∗ to t. If the claim is true, the algorithm correctly outputs true if
all demand can be satis�ed.

Note that

• The �ow on (s∗, si) denote the water produced on day i.
• The �ow on (ui, vi) denote the �ow on (u, v) on day i.
• The �ow on (vi, vi+1) denote the amount of water stored on day i.
• The �ow on (vi, t) denote the ful�lled demand on v on day i.

Any s∗ − t �ow on G̃ corresponds to a water schedule on day 1 to day T . On the other hand, any water schedule

on day 1 to day T can be represented by a s∗ − t �ow on G̃. Furthermore, the ful�lled demand is exactly the sum
of �ow to t, which equals to the �ow value. This proves the claim.

Exercise 2

Algorithm.

• Let f = 0
• While s, t is connected in Gf

� Run Sally's algorithm on Gf to obtain δf .
� Set f ← f + δf .

• Return f .

Runtime. Let OPT(G) be the maximum s− t �ow value in G. Let val(f) be the �ow value of f . We �rst prove
the following:

Lemma 1. We have OPT(G) = OPT(Gf ) + val(f).

Proof. For any s − t �ow δf in Gf , f + δf is a s − t �ow in G. Hence, OPT(G) ≥ val(f + δf ) = val(f) + val(δf ).
In particular, this shows

OPT(G) ≥ val(f) + OPT(Gf ).

On the other hand, by max�ow mincut theorem, there is a s− t cut (A,B) on Gf with capGf
(A,B) = OPT(Gf ).

Using the de�nition of cap, the de�nition of Gf and the �ow value lemma

capG(A,B) = capGf
(A,B) + val(f).

Hence, we have

OPT(G) ≤ capG(A,B)

= capGf
(A,B) + val(f)

= OPT(Gf ) + val(f).

�
1



2

Let f (k) be the �ow at the beginning of the k-th step. By the guarantee of the Sally's algorithm, we have

val(δ
(k)
f ) ≥ 1

2
OPT(Gf(k)).

Using this and the previous lemma, we have

OPT(Gf(k+1)) = OPT(Gf(k))− val(δ
(k)
f )

≤ 1

2
OPT(Gf(k)).

Hence, the optimum value of the residual graph halves every step. Initially, Gf(1) = G with optimum value F .
Hence, in O(logF ) iterations, the optimal value is < 1. Since the Sally's algorithm outputs an integer �ow, we have
OPT(Gf(k)) is integer for all k. Hence, in O(logF ) iterations, OPT(Gf(k)) becomes 0 and max�ow mincut theorem
shows that s− t is disconnected in Gf(k) .

Since Sally's algorithm takes O(m) time and since there are O(logF ) iterations, the total runtime is O(m logF ).

Correctness. Since δf is s − t �ow on Gf , f + δf is s − t �ow on G. Hence, the algorithm outputs a s − t
�ow. Since the algorithm only terminates when s− t is disconnected in Gf(k) , max�ow mincut theorem shows that
OPT(Gf ) = 0. By the previous lemma, this shows the �ow is a max�ow (val(f) = OPT(G)).


