
1. Question 1

Given an undirected graph G with n vertices and m edges. Each edge represents a highway or a �ight. Let ce
be the # hours needed to cross edge e. Suppose that

• It takes 3 extra hours to pass through the security in airport.
• No extra hour for transferring from one �ight to another.

Give a polynomial time algorithm to �nd the fastest way to go from vertex s to vertex t.

Algorithm.

• Let V be the set of vertices in the original graph.
• Let EH and EF be the set of highway and �ight edges in the original graph.

• We de�ne a new graph G̃ as follows:
� For each v ∈ V

∗ Add two vertices vc and va where c, a denotes �city� and �airport�
∗ Add an edge (vc, va) with cost 3
∗ Add an edge (va, vc) with cost 0

� For each (u, v) ∈ EH
∗ Add an edge (uc, vc) with cost c(u,v)

� For each (u, v) ∈ EF
∗ Add an edge (ua, va) with cost c(u,v)

• Run shortest path algorithm on G̃ from sc to tc.

Runtime. G̃ has O(n) vertices and O(n+m) edges. Hence, the shortest path algorithm takes O(m+ n log n).

Correctness. The length of any path in G̃ is exactly the time required for the trip:

• The cost of passing through security is captured by the cost of the edge (vc, va).
• No transfer cost is because all �ight edges are on �airport� vertices.

2. Question 2

Given an undirected graph G with n vertices and m edges. Each edge represents a highway or a �ight. Let ce
be the # hours needed to cross edge e. Suppose that

• It takes 3 extra hours to pass through the security in airport.
• No extra hour for transferring from one �ight to another.
• You cannot take more than 3 �ights in the whole trip.

Give a polynomial time algorithm to �nd the fastest way to go from vertex s to vertex t.

Algorithm.

• Let V be the set of vertices in the original graph.
• Let EH and EF be the set of highway and �ight edges in the original graph.

• We de�ne a new graph G̃ as follows:
� For each v ∈ V

∗ Add 8 vertices {vc,i, va,i}3i=0 where c, a denotes �city� and �airport� and i denotes the number of
�ight taken

∗ Add an edge (vc,i, va,i) with cost 3 for all i ∈ {0, 1, 2, 3}
∗ Add an edge (va,i, vc,i) with cost 0 for all i ∈ {0, 1, 2, 3}

� For each (u, v) ∈ EH
∗ Add an edge (uc,i, vc,i) with cost c(u,v) for all i ∈ {0, 1, 2, 3}

� For each (u, v) ∈ EF
∗ Add an edge (ua,i, va,i+1) with cost c(u,v) for all i ∈ {0, 1, 2}

� Add the �nal destination t∗c
� Add an edge (tc,i, t

∗
c) with cost 0 for all i ∈ {0, 1, 2, 3}

• Run shortest path algorithm on G̃ from sc,0 to t∗c .

Runtime. G̃ has O(n) vertices and O(n+m) edges. Hence, the shortest path algorithm takes O(m+ n log n).
1



2

Correctness. The length of any path in G̃ is exactly the time required for the trip:

• The cost of passing through security is captured by the cost of the edge (vc, va).
• No transfer cost is because all �ight edges are on �airport� vertices.

All path in G̃ takes at most 3 �ight because each �ight edge increase i to i+ 1 and that i starts at 0 and is capped
to 3.

3. Question 3

Given a sequence of increasing integer a1, a2, · · · , an. Assume there is i such that ai = i. Give an algorithm to
�nd such i in O(log n) time.

Algorithm.

• De�ne bi
def
= ai − i implicitly.

• Note that bi is non-decreasing.
• Run binary search on bi to �nd bi = 0.

Runtime. Binary search takes O(log n) time (bi is only computed on �y).

Correctness. In order for binary search to work, it su�ces to prove that bi is non-decreasing. This follows from

bi+1 = ai+1 − (i+ 1) ≥ ai + 1− (i+ 1) = ai − i = bi.

4. Question 4

Given a complete binary tree with root r and n vertices. Give an algorithm to �nd k leaves of the tree in
O(k + log n) time.

Algorithm.

• Let S ← n+1
2 , v ← r

• While S ≥ 2k
� Pick any child u of v
� v ← u. S ← S/2

• Return all leaves under v (using BFS/DFS on the subtree at v and starts at v)

Correctness. First, we show that during the whole algorithm S is the number of leaves under v.
Since the tree is complete binary tree, n = 2h + 2h−1 + · · · + 1 = 2h+1 − 1 where h is the height of the tree.

Hence, initially S = n+1
2 = 2h which is exactly the number of leaves under the root. Each step, we move v down

by 1 step and halves S. This proves the claim.
When the algorithm stop walking down the tree, we have k ≤ S < 2k. Hence, the algorithm outputs at least k

leaves of the tree.

Runtime. The total runtime consists of two part, the cost of walking down the tree and the cost of BFS/DFS.
For the walking down part, since the tree is complete binary tree, its height is O(log n). So is the cost.
For the BFS/DFS part, the cost is bounded by the size of the subtree at v, which is O(S) = O(k).
Hence, the total runtime is O(k + log n).

5. Question 5

Given a weighted directed acyclic graph with n vertices and m edges. Give an O(n+m) time algorithm to �nd
the shortest path distance from vertex s to all other vertices.

Algorithm.

• Sort vertices in topological order and rename these vertices 1, 2, 3, · · · , n.
• Set ds = 0 and du =∞ for all u 6= s.
• For k = s, s+ 1, · · · , n

� For every edges (k, l)
∗ Set dl ← min(dl, dk + cost(k, l)).

Runtime. O(n+m) time because 1) topological sort takes O(n+m) time. 2) we visit every edge only once



3

Correctness. Induction statement: �At the beginning of step k, dk = dist(s, k)� where dist is the shortest path
distance.

Base case: We have d(s) = 0 = dist(s, k).
Inductive step: Let i1, i2, · · · , iα be a shortest path from s to k (Note that i1 = s and iα = k). Due to the

topological order, the algorithm visit the vertex iα−1 after i1 = s and before iα = vk. When the algorithm do the
iα−1 step, it sets

diα ← min(diα , diα−1 + cost(iα−1, iα).

Hence, we have

dk = diα ≤ diα−1
+ cost(iα−1, iα)

= dist(s, iα−1) + cost(iα−1, iα) (induction hypothesis)

= dist(s, iα) (i1, i2, · · · , iα is a shortest path from vs to viα)

= dist(s, k)

Also, dk ≥ dist(s, k) since the algorithm �nds a path from s to k with distance dk.

6. Question 6

Given a connected graph with n vertices and m edges with m ≥ n. Give an O(n) time algorithm to �nd a cycle.

Algorithm.

• Pick arbitrary n edges from the graph and call the new graph G̃.

• Use BFS/DFS to �nd a forest F on G̃.

• Go over all edges in G̃ to �nd e /∈ F .
• Output the cycle on F + e

Runtime. G̃ has n edges. So, BFS/DFS takes O(m+ n) = O(n) time.

Correctness. Since F has ≤ n − 1 edges and G̃ has n edges, there must be e ∈ G̃ that is not in F . Hence, we
can �nd such e. Let a and b be the end point of e and let p be the �rst common ancestor of a, b. Then, the path
a→ p→ b→ a is a cycle.

Remark. One can solve this problem using DFS directly also. You simply stop DFS whenever you �nd a cycle. You
can prove that this algorithm takes O(n) time.


