1. Question 1

Given an undirected graph G with n vertices and m edges. Each edge represents a highway or a flight. Let c_e be the # hours needed to cross edge e. Suppose that
- It takes 3 extra hours to pass through the security in airport.
- No extra hour for transferring from one flight to another.

Give a polynomial time algorithm to find the fastest way to go from vertex s to vertex t.

Algorithm.
- Let V be the set of vertices in the original graph.
- Let E_H and E_F be the set of highway and flight edges in the original graph.
- We define a new graph G as follows:
 - For each $v \in V$
 * Add two vertices v_c and v_a where c, a denotes “city” and “airport”
 * Add an edge (v_c, v_a) with cost 3
 * Add an edge (v_a, v_c) with cost 0
 - For each $(u, v) \in E_H$
 * Add an edge (u_c, v_c) with cost $c_{(u,v)}$
 - For each $(u, v) \in E_F$
 * Add an edge (u_a, v_a) with cost $c_{(u,v)}$
- Run shortest path algorithm on G from s_c to t_c.

Runtime. \tilde{G} has $O(n)$ vertices and $O(n + m)$ edges. Hence, the shortest path algorithm takes $O(m + n \log n)$.

Correctness. The length of any path in \tilde{G} is exactly the time required for the trip:
- The cost of passing through security is captured by the cost of the edge (v_c, v_a).
- No transfer cost is because all flight edges are on “airport” vertices.

2. Question 2

Given an undirected graph G with n vertices and m edges. Each edge represents a highway or a flight. Let c_e be the # hours needed to cross edge e. Suppose that
- It takes 3 extra hours to pass through the security in airport.
- No extra hour for transferring from one flight to another.
- You cannot take more than 3 flights in the whole trip.

Give a polynomial time algorithm to find the fastest way to go from vertex s to vertex t.

Algorithm.
- Let V be the set of vertices in the original graph.
- Let E_H and E_F be the set of highway and flight edges in the original graph.
- We define a new graph G as follows:
 - For each $v \in V$
 * Add 8 vertices $\{v_{c,i}, v_{a,i}\}_{i=0}^{3}$ where c, a denotes “city” and “airport” and i denotes the number of flight taken
 * Add an edge $(v_{c,i}, v_{a,i})$ with cost 3 for all $i \in \{0, 1, 2, 3\}$
 * Add an edge $(v_{a,i}, v_{c,i})$ with cost 0 for all $i \in \{0, 1, 2, 3\}$
 - For each $(u, v) \in E_H$
 * Add an edge $(u_{c,i}, v_{c,i})$ with cost $c_{(u,v)}$ for all $i \in \{0, 1, 2, 3\}$
 - For each $(u, v) \in E_F$
 * Add an edge $(u_{a,i}, v_{a,i+1})$ with cost $c_{(u,v)}$ for all $i \in \{0, 1, 2\}$
 * Add the final destination t^*_c
 * Add an edge $(t^*_{c,i}, t^*_{c})$ with cost 0 for all $i \in \{0, 1, 2, 3\}$
- Run shortest path algorithm on G from $s_{c,0}$ to t^*_c.

Runtime. \tilde{G} has $O(n)$ vertices and $O(n + m)$ edges. Hence, the shortest path algorithm takes $O(m + n \log n)$.

Correctness. The length of any path in \tilde{G} is exactly the time required for the trip:

- The cost of passing through security is captured by the cost of the edge (v_c, v_a).
- No transfer cost is because all flight edges are on "airport" vertices.

All path in \tilde{G} takes at most 3 flights because each flight edge increase i to $i+1$ and that i starts at 0 and is capped to 3.

3. Question 3

Given a sequence of increasing integer a_1, a_2, \cdots, a_n. Assume there is i such that $a_i = i$. Give an algorithm to find such i in $O(\log n)$ time.

Algorithm.

- Define $b_i \overset{\text{def}}{=} a_i - i$ implicitly.
- Note that b_i is non-decreasing.
- Run binary search on b_i to find $b_i = 0$.

Runtime. Binary search takes $O(\log n)$ time (b_i is only computed on fly).

Correctness. In order for binary search to work, it suffices to prove that b_i is non-decreasing. This follows from

$$b_{i+1} = a_{i+1} - (i + 1) \geq a_{i} + 1 - (i + 1) = a_{i} - i = b_i.$$

4. Question 4

Given a complete binary tree with root r and n vertices. Give an algorithm to find k leaves of the tree in $O(k + \log n)$ time.

Algorithm.

- Let $S \leftarrow \frac{n+1}{2}$, $v \leftarrow r$
- While $S \geq 2k$
 - Pick any child u of v
 - $v \leftarrow u$, $S \leftarrow S/2$
- Return all leaves under v (using BFS/DFS on the subtree at v and starts at v)

Correctness. First, we show that during the whole algorithm S is the number of leaves under v.

Since the tree is complete binary tree, $n = 2^h + 2^{h-1} + \cdots + 1 = 2^{h+1} - 1$ where h is the height of the tree. Hence, initially $S = \frac{n+1}{2} = 2^h$ which is exactly the number of leaves under the root. Each step, we move v down by 1 step and halves S. This proves the claim.

When the algorithm stop walking down the tree, we have $k \leq S < 2k$. Hence, the algorithm outputs at least k leaves of the tree.

Runtime. The total runtime consists of two part, the cost of walking down the tree and the cost of BFS/DFS.

For the walking down part, since the tree is complete binary tree, its height is $O(\log n)$. So is the cost.

For the BFS/DFS part, the cost is bounded by the size of the subtree at v, which is $O(S) = O(k)$.

Hence, the total runtime is $O(k + \log n)$.

5. Question 5

Given a weighted directed acyclic graph with n vertices and m edges. Give an $O(n + m)$ time algorithm to find the shortest path distance from vertex s to all other vertices.

Algorithm.

- Sort vertices in topological order and rename these vertices $1, 2, 3, \cdots, n$.
- Set $d_s = 0$ and $d_u = \infty$ for all $u \neq s$.
- For $k = s, s+1, \cdots, n$
 - For every edges (k, l)
 - Set $d_l \leftarrow \min(d_l, d_k + \text{cost}(k, l))$.

Runtime. $O(n + m)$ time because 1) topological sort takes $O(n + m)$ time. 2) we visit every edge only once
Correctness. Induction statement: “At the beginning of step k, $d_k = \text{dist}(s, k)$” where dist is the shortest path distance.

Base case: We have $d(s) = 0 = \text{dist}(s, k)$.

Inductive step: Let $i_1, i_2, \cdots, i_\alpha$ be a shortest path from s to k (Note that $i_1 = s$ and $i_\alpha = k$). Due to the topological order, the algorithm visit the vertex $i_{\alpha-1}$ after $i_1 = s$ and before $i_\alpha = v_k$. When the algorithm do the $i_{\alpha-1}$ step, it sets

$$d_{i_\alpha} \leftarrow \min(d_{i_\alpha}, d_{i_{\alpha-1}} + \text{cost}(i_{\alpha-1}, i_\alpha)).$$

Hence, we have

$$d_k = d_{i_\alpha} \leq d_{i_{\alpha-1}} + \text{cost}(i_{\alpha-1}, i_\alpha)$$

$$= \text{dist}(s, i_{\alpha-1}) + \text{cost}(i_{\alpha-1}, i_\alpha) \quad \text{(induction hypothesis)}$$

$$= \text{dist}(s, i_\alpha) \quad (i_1, i_2, \cdots, i_\alpha \text{ is a shortest path from } v_s \text{ to } v_{i_\alpha})$$

$$= \text{dist}(s, k)$$

Also, $d_k \geq \text{dist}(s, k)$ since the algorithm finds a path from s to k with distance d_k.

6. **Question 6**

Given a connected graph with n vertices and m edges with $m \geq n$. Give an $O(n)$ time algorithm to find a cycle.

Algorithm.

- Pick arbitrary n edges from the graph and call the new graph \tilde{G}.
- Use BFS/DFS to find a forest F on \tilde{G}.
- Go over all edges in \tilde{G} to find $e \notin F$.
- Output the cycle on $F + e$

Runtime. \tilde{G} has n edges. So, BFS/DFS takes $O(m + n) = O(n)$ time.

Correctness. Since F has $\leq n - 1$ edges and \tilde{G} has n edges, there must be $e \in \tilde{G}$ that is not in F. Hence, we can find such e. Let a and b be the end point of e and let p be the first common ancestor of a, b. Then, the path $a \rightarrow p \rightarrow b \rightarrow a$ is a cycle.

Remark. One can solve this problem using DFS directly also. You simply stop DFS whenever you find a cycle. You can prove that this algorithm takes $O(n)$ time.