1. QUESTION 1

Given an undirected graph G with n vertices and m edges. Each edge represents a highway or a flight. Let c.
be the # hours needed to cross edge e. Suppose that

o It takes 3 extra hours to pass through the security in airport.
e No extra hour for transferring from one flight to another.

Give a polynomial time algorithm to find the fastest way to go from vertex s to vertex t.

Algorithm.

e Let V be the set of vertices in the original graph.
e Let Ey and EF be the set of highway and flight edges in the original graph.
e We define a new graph G as follows:
— Foreachv eV
x Add two vertices v, and v, where ¢, a denotes “city” and “airport”
* Add an edge (v.,v,) with cost 3
* Add an edge (vq,v.) with cost 0
— For each (u,v) € By
* Add an edge (uc, ve) with cost c(y .
— For each (u,v) € Ep
* Add an edge (uq,vq) With cost c(y)
e Run shortest path algorithm on G from Se to te.

Runtime. G has O(n) vertices and O(n + m) edges. Hence, the shortest path algorithm takes O(m + nlogn).

Correctness. The length of any path in G is exactly the time required for the trip:

e The cost of passing through security is captured by the cost of the edge (v, v,)-
e No transfer cost is because all flight edges are on “airport” vertices.

2. QUESTION 2

Given an undirected graph G with n vertices and m edges. Each edge represents a highway or a flight. Let ¢,
be the # hours needed to cross edge e. Suppose that

o It takes 3 extra hours to pass through the security in airport.
e No extra hour for transferring from one flight to another.
e You cannot take more than 3 flights in the whole trip.

Give a polynomial time algorithm to find the fastest way to go from vertex s to vertex t.

Algorithm.

e Let V be the set of vertices in the original graph.
e Let Ey and Er be the set of highway and flight edges in the original graph.
e We define a new graph G as follows:
— Foreachv eV
* Add 8 vertices {v.;,vq:}i_, Where ¢, a denotes “city” and “airport” and i denotes the number of
flight taken
% Add an edge (v, vq,;) with cost 3 for all ¢ € {0,1,2,3}
« Add an edge (vq,4, ve;) with cost 0 for all ¢ € {0, 1,2, 3}
For each (u,v) € Eg
* Add an edge (uc,,ve,s) with cost ¢, . for all i € {0,1,2,3}
— For each (u,v) € Ep
* Add an edge (uq,i,Va,i+1) With cost c(,) for all i € {0,1,2}
— Add the final destination ¢}
Add an edge (., ;) with cost 0 for all ¢ € {0,1, 2,3}
e Run shortest path algorithm on G from Sc,0 to t.

Runtime. G has O(n) vertices and O(n + m) edges. Hence, the shortest path algorithm takes O(m + nlogn).
1

Correctness. The length of any path in G is exactly the time required for the trip:
e The cost of passing through security is captured by the cost of the edge (v, v,)-
e No transfer cost is because all flight edges are on “airport” vertices.

All path in G takes at most 3 flight because each flight edge increase i to 7 + 1 and that ¢ starts at 0 and is capped
to 3.

3. QUESTION 3

Given a sequence of increasing integer a1, as, - ,a,. Assume there is ¢ such that a; = i. Give an algorithm to
find such 7 in O(logn) time.

Algorithm.
e Define b; def a; — 1 implicitly.
e Note that b; is non-decreasing.
e Run binary search on b; to find b; = 0.

Runtime. Binary search takes O(logn) time (b; is only computed on fly).

Correctness. In order for binary search to work, it suffices to prove that b; is non-decreasing. This follows from

bi+1:ai+1—(i+1)Zai—l—l—(i—l—l):ai—i:bi.

4. QUESTION 4

Given a complete binary tree with root r and n vertices. Give an algorithm to find k leaves of the tree in
O(k + logn) time.

Algorithm.
o Let S+ ”T'H, VT
e While S > 2k
— Pick any child v of v
— v+ u S« S5/2
e Return all leaves under v (using BFS/DFS on the subtree at v and starts at v)

Correctness. First, we show that during the whole algorithm S is the number of leaves under v.

Since the tree is complete binary tree, n = 2" +2"=1 4 ... 4+ 1 = 21 _ 1 where h is the height of the tree.
Hence, initially S = "%rl = 2" which is exactly the number of leaves under the root. Each step, we move v down
by 1 step and halves S. This proves the claim.

When the algorithm stop walking down the tree, we have k < S < 2k. Hence, the algorithm outputs at least k
leaves of the tree.

Runtime. The total runtime consists of two part, the cost of walking down the tree and the cost of BFS/DFS.
For the walking down part, since the tree is complete binary tree, its height is O(logn). So is the cost.
For the BFS/DFS part, the cost is bounded by the size of the subtree at v, which is O(S) = O(k).
Hence, the total runtime is O(k + logn).

5. QUESTION 5

Given a weighted directed acyclic graph with n vertices and m edges. Give an O(n + m) time algorithm to find
the shortest path distance from vertex s to all other vertices.

Algorithm.
e Sort vertices in topological order and rename these vertices 1,2,3,--- ,n.
e Set ds =0 and d,, = oo for all u # s.
e Fork=s,s+1,---,n
— For every edges (k,1)
* Set d; + min(d;, dy, + cost(k,1)).

Runtime. O(n + m) time because 1) topological sort takes O(n 4+ m) time. 2) we visit every edge only once

3

Correctness. Induction statement: “At the beginning of step k, di = dist(s, k)” where dist is the shortest path
distance.

Base case: We have d(s) = 0 = dist(s, k).

Inductive step: Let 1,42, - ,i, be a shortest path from s to k (Note that iy = s and i, = k). Due to the
topological order, the algorithm visit the vertex i,_; after i; = s and before i, = vy. When the algorithm do the
tq—1 Step, it sets

d;, < min(d;_,d;, , + cost(ia—1,%q)-
Hence, we have
di = dia < diafl + COSt(iafl,ia)
= dist(s,iq—1) + cost(iq—1,1q) (induction hypothesis)
= dist(s,iq) (41,92, - ,% is a shortest path from vg to v;_)
= dist(s, k)
Also, dj, > dist(s, k) since the algorithm finds a path from s to k with distance d.

6. QUESTION 6
Given a connected graph with n vertices and m edges with m > n. Give an O(n) time algorithm to find a cycle.

Algorithm.
Pick arbitrary n edges from the graph and call the new graph G.
Use BFS/DFS to find a forest F' on G.

[]
e Go over all edges in G to find e ¢ F.
e Output the cycle on F +e¢

Runtime. G has n edges. So, BFS/DFS takes O(m + n) = O(n) time.

Correctness. Since F' has < n — 1 edges and G has n edges, there must be e € G that is not in F. Hence, we
can find such e. Let a and b be the end point of e and let p be the first common ancestor of a,b. Then, the path
a— p—b—aisacycle.

Remark. One can solve this problem using DFS directly also. You simply stop DFS whenever you find a cycle. You
can prove that this algorithm takes O(n) time.

