CSE 421

Greedy Algorithms / Dijkstra’s Algorithm

Yin Tat Lee

Homework 1 Comments

« Except for EC, each guestion should take less than 1 page.
(You don’t have so much time in midterm/final/interviews)

+ Q2: (logn)Vlogn < plogm??
(logn)viogn = pylognloglogn pylogn \/@ is less than (logn)?/3

« Q3:Instead of (n —1)/3,o0necanget(n—1)/5
Induction on the number of vertices.

* Q4. Reduction-type Question
Algo: Transform input. Call the class algorithm. Transform output.
Proof: Why the input is valid. Why the output is what we want.

Office Hour

Please do HW earlier.

You can start doing HW once it is announced.
(I won’t ask things that hasn'’t covered)

HW3 IS O Ut Why YinTat has hair?

If no time slot works for you,
fill in this https://bit.ly/3fCEgaU

TAs and YinTat are lonely

https://bit.ly/3fCEgaU

Experiment Y

Axiom:

« My teaching needs improvement.
« | care about teaching.

* Improvements are possible.

Algorithm:

 For each week

| will make a poll to collect suggestions.
| will implement the suggestion with the most hearts.

* For the benefit of everyone, please participate.

Single Source Shortest Path

Given an (un)directed graph G = (V, E) with non-negative
edge weights c, = 0 and a start vertex s.

Find length of shortest paths from s to each vertex in G
e ¢

8
% B :
& :# i ﬂ:} o ¢-.¢__¢ o {
& *3—&-3"* ¥ B | sos @
B o 8 / 8
4 W A ,?:“4 &° -, #
o ¢ i § Ty e bog &
. [y P S.-"'.-"" #ﬁﬂ_ﬁ_{
aL T T e W S— o A
NIRRT AL o 2 ol
efo—fo-ol-godoe e W -;;Jr g
& oe | - | g
@ o i TV -aeo 000
A TR TR Y I el S G .¢f¢¢
;P*P s L STl N W, o8,
: s
¢_'¢‘ A R .:él- a W
¢.# & & i -&f _.-"l
' # ; ®
& ' .
\ "\\# &
&
ol
&

Dijkstra(G,c,s) {
Initialize set of explored nodes S « {s}

// Maintain distance from s to each vertices in S
dis] <0

while (S #V)

{
Pick an edge (u,v) such that u€S$ and v¢S and

dlu] + ¢ is as small as possible.

Add v to S and define d[v] =d[u] + cyy).
Parent(v) « u.

}

[Set S is all vertices to which we have found the shortest path.]

Dijkstra’s Algorithm: Example

Dijkstra’s Algorithm: Example

Dijkstra’s Algorithm: Example

Dijkstra’s Algorithm: Example

Dijkstra’s Algorithm: Example

Dijkstra’s Algorithm: Example

Dijkstra’s Algorithm: Example

Dijkstra’s Algorithm: Example

Dijkstra’s Algorithm: Example

Dijkstra’s Algorithm: Example

Dijkstra’s Algorithm: Example

Dijkstra’s Algorithm: Example

Dijkstra’s Algorithm: Example

Dijkstra’s Algorithm: Example

Dijkstra’s Algorithm: Example

Dijkstra’s Algorithm: Example

Dijkstra’s Algorithm: Example

Dijkstra’s Algorithm: Example

Dijkstra’s Algorithm: Example

Dijkstra’s Algorithm: Example

®

-OO—

/

[Dijkstra’s Algorithm outputs a tree.]

Remarks on Dijkstra’s Algorithm

Algorithm works on directed graph (with nonnegative weights)

Algorithm produces a tree of shortest paths to s following
Parent links (for undirected graph)

The algorithm fails with negative edge weights.
Why does it fail?

For unit length graph, Dijkstra’s algorithm is same as BFS.

Implementing Dijkstra’s Algorithm

Priority Queue: Elements each with an associated key Operations
* Insert
* Find-min

— Return the element with the smallest key

 Delete-min

— Return the element with the smallest key and delete it from the data structure

« Decrease-key

— Decrease the key value of some element
Implementations
Binary Heaps:
* O(logn) time insert/decrease-key/delete-min,
* O0(1) time find-min
Fibonacci heap:
* 0(1) time insert/decrease-key
* O(logn) delete-min
* O(1) time find-min

Dijkstra(G,c,s) {
Initialize set of explored nodes S « {s}

// Maintain distance from s to each vertices in § i _Of ITISFE:
d[s] « 0 eachin 0(1)

Insert all neighbors v of s into a priority queue with value ().

while (S #V)

{
// Pick an edge (u,v) such that u €S and v¢ S and

// dlu] + cq,) is as small as possible. :
) 0(n) of delete min

each in O(logn)

u < delete min element from Q

Add v to S and define d[v] =d[u]+ ¢y -
Parent(v) « u.

foreach (edge e = (v,w) incident to v) | O(m) of decrease/insert ke

if (wée S) eachrunsin 0(1)

if (w is not in the Q)
Insert w into Q with value d[v]+ cp)

else (the key of w > d[v]+ cuw))
Decrease key of v to d[v]+cuw)-

Disjkstra’s Algorithm: Correctness

Theorem: For any u € S, the path P, on the tree is the shortest
path from stou on G. (For all u € S, d(u) = dist(s,u).)

Proof: Induction on S| = k.

Base Case: This is always true when S = {s}.

Inductive Step: Say v is the (k + 1)5¢ vertex that we add to S.
Let (u, v) be last edge on B,.

If B, is not the shortest path, there is a shorter path P to S.
Consider the first time that P leaves S with edge (x, y).

So, c(P) >d(x) + cx,_y/z\d(u) + cypy = d(W) = c(P,).

P is the shorter path. Due to the choice of v

A contradiction.

Problem 4 (20 points). Given a polynomial time algorithm to solve the following problem:

Input: An undirected graph G = (V, F) and a positive integer edge length [, for each edge
e € F, and two vertices s,t € V.

Output: A shortest path (in terms of the total edge length on the path) from s to t with the
minimum number of edges.

Show how to use or modify Dijkstra’s algorithm to solve the problem with the same time
complexity. Prove the correctness and the runtime of the algorithm. (You can use any fact we
proved about Dijkstra.)

Figure 2: There are two paths (highlighted) of length 4 between s and ¢. The path s,d, f,t has
only three edges and is the optimal solution in this example. Note that there are two s — ¢t path
(s,c,t and s,d,t) with only two edges, but they are of length 5 and are not shortest paths.

31

Dijkstra Example

1.6 million vertices
3.8 million edges
Distance = travel time.

Images comes from A.V. Goldberg

Dijkstra Example

Searched Area
(starting from green point)

Problem of Dijkstra:
Didn’t take account of where is t

340ms
Bidirectional Dijkstra

Forward search
Backward search

4)

Problem of Bidirectional Dijkstra:
Forward search did not take
account of t

| Backward search did not take
' account of s.
_ J

A* Search

AStar (G,c,s,t) {
Initialize set of explored nodes S « {s}

// Maintain distance from s to each vertices in § BFS
d[s] < 0
while (S #V)
{
Pick an edge (u,v) such that u€S and v¢ S and
dlu] + ¢y + h(v) is as small as possible. Dijkstra

Add v to S and define d[v] =d[u] + cuy)-

Parent(v) <« u.
} ?

A*

h(v) is the estimate of distance from v to t
If h(v) is exactly the shortest distance from v to t, then
the algorithm would go directly to t.

A* Search

Let h(v) be the estimate distance from v to t.
Define the reduced cost ¢, , = ¢, — h(u) + h(v).

Claim 1: Shortest path on ¢ is same as shortest path on c.

Claim 2: If the reduced cost ¢, ,, Is non-negative,
Dijkstra on ¢ is equivalent to A* on ¢ with the estimate h.

Therefore, A* Is correct.

Estimating the distance

Euclidean bounds:
Limited applicability, not very good for driving directions.

Triangle inequality:
Let dist(x,y) be the shortest path distance from x to y.

For any node [, we can estimate the distance dist(x,t) by
dist(x,l) — dist(t,).

Note that dist(x, t) + dist(t,l) = dist(x,l). (Triangle inequality)
So, dist(x,1l) — dist(t,1) is a lower bound for dist(x,t)!

Algorithm: Select landmarks [;, define
h(v) = maxdist(x,l;) — dist(t, ;).
l

12ms

A* + Landmarks + Triangle equality (ATL)

Forward search
Backward search

&
s, Inactive landmarks
s
y Problem of ATL:
o We should stick with highway!
v e
*

From now on, we allow to
preprocess the graph.

30ms

Reach Algorithm

Use highway except for
the beginning and the
end of the journey!

Forward search
Backward search

Creating shortcut in the graph

When you are on the highway, don’t need to keep checking the
map until you are nearby!

1000

2ms

Reach + Shortcut Algorithm

Forward search
Backward search

0.7ms

Reach + Shortcut + ATL Algorithm

