CSE 421: Introduction
to Algorithms

Application of BFS

Yin Tat Lee

Bipartite Graphs

Definition: An undirected graph ¢ = (V, E) Is bipartite

If you can partition the vertex set into 2 parts (say,
blue/red or left/right) so that

all edges join vertices in different parts
l.e., no edge has both ends in the same part.

Application:
« Scheduling: machine=red, jobs=Dblue
« Stable Matching: men=blue, woman=red

a bipartite graph

2

Testing Bipartiteness
Problem: Given a graph G, is it bipartite?

Many graph problems become:
« Easier/Tractable if the underlying graph is bipartite (matching)

Before attempting to design an algorithm, we need to
understand structure of bipartite graphs.

a bipartite graph G another drawing of G

An Obstruction to Bipartiteness

Lemma: If G is bipartite, then it does not contain an odd
length cycle.

Proof: We cannot 2-color an odd cycle, let alone G.

bipartite not bipartite
(2-colorable) (not 2-colorable)

A Characterization of Bipartite Graphs

Lemma: Let G be a connected graph, and let L, ..., L, be the
layers produced by BFS(s). Exactly one of the following holds.

() No edge of G joins two nodes of the same layer, and G is
bipartite.

(i) An edge of G joins two nodes of the same layer, and
G contains an odd-length cycle (and hence is not bipartite).

Case (ii)

A Characterization of Bipartite Graphs

Lemma: Let G be a connected graph, and let L, ..., L, be the
layers produced by BFS(s). Exactly one of the following holds.

() No edge of G joins two nodes of the same layer, and G is
bipartite.

(i) An edge of G joins two nodes of the same layer, and
G contains an odd-length cycle (and hence is not bipartite).

Proof. (i)
Suppose no edge joins two nodes in the same layer.
By previous lemma, all edges join nodes on adjacent levels.

Bipartition:
blue = nodes on odd levels,
red = nodes on even levels.

A Characterization of Bipartite Graphs

Lemma: Let G be a connected graph, and let L, ..., L, be the
layers produced by BFS(s). Exactly one of the following holds.

() No edge of G joins two nodes of the same layer, and G is
bipartite.

(i) An edge of G joins two nodes of the same layer, and
G contains an odd-length cycle (and hence is not bipartite).

Proof. (i)

Suppose {x,y} Is an edge & x,y in same level L;.
Let z = their lowest common ancestor in BFS tree.
Let L; be level containing z.

Consider cycle that takes edge from x to y,
then tree from y to z, then tree from z to x.

Its lengthis 1+ (j —i) + (j — i), which is odd. vayer,

z = lca(x, y)

Obstruction to Bipartiteness

Corollary: A graph G is bipartite if and only if it contains no
odd length cycles.

Furthermore, one can test bipartiteness using BFS.

bipartite not bipartite
(2-colorable) (not 2-colorable)

Summary

BFS(s) implemented using queue.

Edges into then-undiscovered vertices define a tree —
the “Breadth First spanning tree” of ¢

Level i in the tree are exactly all vertices v s.t., the
shortest path (in ¢) from the root s to v Is of length i

All nontree edges join vertices on the same or adjacent
layers of the tree

Applications:
« Shortest Path
« Connected component
« Test bipartiteness / 2-coloring

CSE 421

Depth First Search

Yin Tat Lee

10

Depth First Search

Follow the first path you find
as far as you can go; back up
to last unexplored edge when
you reach a dead end,

then go as far you can

Y

Naturally implemented using recursive calls or a stack ,=.

oy
9,
11

DFS(s) — Recursive version

Initialization: mark all vertices undiscovered

DFS(v)
Mark v discovered

for each edge {v, x}
If (x Is undiscovered)
Mark x discovered
X — parent = Uu
DFS(x)

Mark v fully-discovered

‘DEEP SEARCH

12

Non-Tree Edges in DFS

BFS tree # DFS tree, but, as with BFS, DFS has found a
tree in the graph s.t. non-tree edges are "simple" in some

way.

All non-tree edges join a vertex and one of its
descendants/ancestors in the DFS tree

13

Color code:

D FS(A) undiscovered

discovered
@ fully-explored
Suppose edge lists R .
at each vertex Ca:édStaclk _
are sorted a (Edge list):
alphabeticall
P y R Y A (B.J)

....... @ O @ =

{1}

Color code:
undiscovered
discovered
fully-explored

Call Stack:

@ (Edge list)
Al A (B.J)

B (A,C,J)

*]
*]
*
>
*
>
*
*
*
*
&
*
*
*
*
>
.0
]] n
& n » u
@ @ @ @

* *

* *

* *

{1,2}

Color code:
undiscovered
discovered
fully-explored

Call Stack:

@ (Edge list)
Ik A (BJ)

B (X.Z.9)

C (B,D,G,H)

*
*]
* u
*
>
*
>
*
*
*
*
&
*
*
*
*
>
.0
]] n
& n » u
@ @ @ @
* *
* *
* *

{1,2,3}

Color code:
undiscovered
discovered
fully-explored

Call Stack:

@ (Edge list)
A A (BJ)

B (X.Z.J)
C(BB,G,H)
D (C,E.F)

O S OO ON--=

{1,2,3,4}

17

Color code:

undiscovered
discovered
fully-explored
. Call Stack:
@ (Edge list)
.:: : "‘.‘ A (BJ)
& E " B (%gﬂ-])

C(BP.GH)
D (Z.E.F)

@@. @ @ E (D’F)

O S ONORNON--=

{1,2,3,4,5}

18

Color code:

undiscovered
discovered
fully-explored
. Call Stack:
@ (Edge list)
ST A (B.J)
& E " B(%¢;J)

C(BP.GH)
D (Z.E.F)

77N E (B7)
F (D,E,G)

O ONONNON--
{1,2,3,4,5,
6}

19

Color code:

undiscovered
discovered
fully-explored
. Call Stack:
@ (Edge list)
ST A (B.J)
& E " B(%¢;J)

C(BP.GH)
D (Z.E.F)

: Py . | b
) F(DE.8)
; ; G(C,F)

SR ONORNON=:

{1121314151
6,7}

20

Color code:
undiscovered

discovered
fully-explored
. Call Stack:
@ (Edge list)
.:: : "‘.‘ A (BJ)
< E " B (%gﬂ-])

C(BP.GH)
D (Z.E.F)

., & : 5 c wf)
G ORI
; ; G(ZF)

SR ONORNON=:

{1121314151
6,7}

21

Color code:

undiscovered
discovered
fully-explored
. Call Stack:
@ (Edge list)
ST A (B.J)
& E " B(%¢;J)

C(BP.GH)
D (Z.E.F)

7N 7\ E B.F)
- F DE2Z)

SR ONORNON-:

{1121314151
6}

22

Color code:
undiscovered

discovered
fully-explored
. Call Stack:
@ (Edge list)
.:: : "‘.‘ A (BJ)
& E " B (%gﬂ-])

C(BP.GH)
D (Z.E.F)

L4 *
L4 [] *
L4 ™ “
L4 n .
N . .
S [] “
L4 []
L4 [.
L4
/ E OZ f)
LN |
. []

SR ONORNNONE:

{1,2,3,4,5}

23

Color code:
undiscovered
discovered
fully-explored

Call Stack:

@ (Edge list)
3) A (BJ)

B (X.Z.J)
C(BB,GH)
D (Z.EF)

ORONONNON:

{1,2,3,4}

24

Color code:
undiscovered
discovered
fully-explored

Call Stack:

"@ (Edge list)
] . A (B.J)

B (X.Z.J)
C(BP.GH)

ORONONNON:

{1,2,3}

25

Color code:
undiscovered

discovered
fully-explored
. Call Stack:
@ (Edge list)
.:: : "‘.‘ A (BJ)
< é ‘\“ B (% ¢ 1‘J)
E “" C (%W!giw)
: H(C,1,J)
@ st[] =
{1,2,3,8}

26

Color code:

undiscovered
discovered
fully-explored
. Call Stack:
@ (Edge list)
T A (B.J)
B (X.£.J)
3 é “"‘ C (B/’z 1¢ 1”)
: " H (Z)J)
OO ™
@ st[] =
{1,2,3,8,9}

27

Color code:
undiscovered

discovered
fully-explored
) Call Stack:
@ (Edge list)
ST A (B.J)
< g ““‘ B (%SZ "])
E “" C(B,’z,g,m
:5 : H(ZXJ)
ON=
{1,2,3,8}

28

S
IS
e
.

Color code:

undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

A(B'J)

B (XZ,J)
C(B.B.Z.H)
H (Z J2)

J (A,B,H,K,L)

stf] =
{1,2,3,8,
10}

29

Color code:

undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

A(B’J)

B (X2.J)
C(B.P.8.H)
H(Z V)

J (HBHKL)

K (J,L)

Sst] =
{1,2,3,8,10
11}

30

Color code:

undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

A(B’J)

B (X2.J)
C(B.P.8.H)
H(Z V)

J (HBHKL)
K (WY

L (J,K,M)

Sst] =
{1,2,3,8,10
,11,12}

31

Color code:

undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

A (B)J)

B (XZ,J)
C(B.B.Z.H)
H (2 J2)

J (KBHAKL)
K (WY
L (VM)

M(L)

Sst] =
{1,2,3,8,10
,11,12,13}

32

Color code:

undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

A (B)J)

B (XZ,J)
C(B.B.Z.H)
H (2 J2)

J (KBHAKL)
K (WY
L (VM)

Sst] =
{1,2,3,8,10
,11,12}

33

Color code:

undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

A(B’J)

B (X2.J)
C(B.P.8.H)
H(Z V)

J (HBHKL)
K (VLY

Sst] =
{1,2,3,8,10
11}

34

Color code:

undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

A(B’J)

B (X2.J)
C(B.P.8.H)
H(Z V)

J (HBHKL)

stf] =
{1,2,3,8,
10}

35

Color code:

undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

A (B.J)
B (XL
C (BB.8.H)
H(Z V)
I WEHKY

stf] =
{1,2,3,8,
10}

36

Color code:

undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

A(B'J)

B (XZ,J)
C(B.B.Z.H)
H(Z /)

Sst] =
{1,2,3,8}

37

DFS(A)

0..
L 4

Color code:
undiscovered

discovered

fully-explored

2
4

3
.
L J

3

.

L J
2
2
L J

Call Stack:
(Edge list)

A(BJ)
B (X.Z.J)
C(BB.Z.H)

Sst] =
{1,2,3}

38

DFS(A)

0..
L 4

Color code:
undiscovered

discovered

fully-explored

2
4

3
.
L J

3

.

L J
2
2
L J

Call Stack:
(Edge list)

A(BJ)
B (X.2.J)

Sst] =
{1,2}

39

DFS(A)

0..
L 4

Color code:
undiscovered

discovered

fully-explored

2
4

3
.
L J

3

.

L J
2
2
L J

Call Stack:
(Edge list)

A(BJ)
B (X.2.7)

Sst] =
{1,2}

40

Color code:

D FS(A) undiscovered

discovered
@ fully-explored

‘e, Call Stack:

@ (Edge list)

2
4
L J
L 2

n A (B))

@ .
.

L 2
| *

Sst] =

11}

Color code:

D F S (A) undiscovered

discovered
@ fully-explored

Call Stack:

@ @ (Edge list)
A (B2)

2
4

L J
L 2

! L J
2

2
. L J

st[] =

11}

@ 42

Color code:

D FS(A) undiscovered

discovered
@ fully-explored

R Call Stack:

@ (Edge list)

4
L J
L 2

%, TA-DA!

@ *

.

L 2

| *
@ o @ @ @

st]] = {}

Edge code:
Tree edge
Back edge

44

Tree edge

Back edge =sssss

No Cross Edges!
SR

Edge code:

.
00
*
*
*
00 @
@0 m
@ IllIlllllllllllllllllllllllll@

DFS(A)

Properties of (undirected) DFS

Like BFS(s):
 DFS(s) visits x iff there is a path in G from s to x

So, we can use DFS to find connected components

Edges into then-undiscovered vertices define a tree —
the "depth first spanning tree" of G

Unlike the BFS tree:

The DF spanning tree isn't minimum depth
Its levels don't reflect min distance from the root

Non-tree edges never join vertices on the same or
adjacent levels

46

Non-Tree Edges in DFS

Lemma: For every undirected edge {x,y}, thenone of x or y is
an ancestor of the other in the tree.

Proof:
Suppose that x is visited first.
Therefore DFS(x) was called before DFS(y)

Since {x,y} is not in DFS tree, y was visited when the edge {x, y}
was examined during DFS(x)

Therefore y was visited during the call to DFS(x) so y is a
descendant of x.

47

Non-Tree Edges (Directed Graph)

Lemma: For every directed edge (x,y), then either
e vy isvisited first or
e yisadescendant of x

(\’j. forward edge DI,/"*\‘;I
..?L_-.{'\I l?‘-—-‘{.l\

48

CSE 421

Applications of DFS
Topological sort

Yin Tat Lee

49

Precedence Constraints

In a directed graph, an edge (i,j) means task i must occur
before task j.

Applications
« Course prerequisite:
course i must be taken before]
« Compilation:
must compile module i before j
« Computing overflow:
output of job i is part of input to job j
« Manufacturing or assembly:
sand it before paint it

50

Directed Acyclic Graphs (DAG)

Def: A directed acyclic graph (DAG) is a graph that
contains no directed cycles.

Def. A topological order of a directed graph ¢ = (V,E) is an
ordering of its nodes as v4, v,, ..., 1, SO that for every edge
(Ul', U]) we have i <]

a topological ordering of that DAG—
all edges left-to-right

51

DAGSs: A Sufficient Condition

Lemma: If G has a topological order, then G is a DAG.

Proof. (by contradiction)

Suppose that ¢ has a topological order 1,2, ...,n and that ¢ also
has a directed cycle C.

Let i be the lowest-indexed node in C, and let j be the node just
before i; thus (j,i) is an (directed) edge.
By our choice of i, we have i < j.

On the other hand, since (j,i) is an edge and 1,2,...,nisa
topological order, we must have j < i, a contradiction

the directed cycle C

@O%—*CBOC:’)OJPO@

the supposed topological order: 1,2,...,n

52

DAGSs: A Sufficient Condition

G has a topological ‘

? G is a DAG

order < : !

53

Every DAG has a source node

Lemma: If G is a DAG, then G has a node with no incoming edges (i.e., a
source).

| The proof is similar to “tree has n — 1 edges”. |

Proof. (by contradiction)
Suppose that ¢ is a DAG and it has no source

Pick any node v, and begin following edges backward from v. Since v
has at least one incoming edge (u, v) we can walk backward to wu.

Then, since u has at least one incoming edge (x, u), we can walk
backward to x.

Repeat until we visit a node, say w, twice.

Let C be the sequence of nodes encountered between successive Visits
tow. C is a cycle.

54

DAG => Topological Order

Lemma: If G is a DAG, then G has a topological order

Proof. (by induction on n)

Base case: trueifn = 1.

Hypothesis: Every DAG with n — 1 vertices has a topological ordering.
Inductive Step: Given DAG with n > 1 nodes, find a source node v.

G — {v}is a DAG, since deleting v cannot create cycles.

Reminder: Always remove
vertices/edges to use IH

By hypothesis, G — {v} has a topological ordering.
Place v first in topological ordering; then append nodes of ¢ — {v}
In topological order. This is valid since v has no incoming edges.

55

A Characterization of DAGSs

G has a
topological order

)
—

Gis a DAG

56

Quiz
How to find topological ordering in polynomial time?
Algorithm (n? time):
Function m = Order(G)

* Find a vertex v in G with no incoming edge (Time: n)
* Return (v, Order(G — {v})). (Total Time: m)

How to improve the runtime?
« Maintain the set of vertices with no incoming edge.

Alternatively, you can solve this problem by DFS.

o7

58

59

Topological order: 1, 2,3,4,5,6, 7

Summary for last few classes

Terminology: vertices, edges, paths, connected component, tree,
bipartite...

Vertices vs Edges: m = 0(n?) in general, m = n — 1 for trees

BFS: Layers, queue, shortest paths, all edges go to same or
adjacent layer

DFS: recursion/stack; all edges ancestor/descendant
Algorithms: Connected Comp, bipartiteness, topological sort
Techniques: Induction on vertices/layers

60

