CSE 421: Introduction
to Algorithms

Application of BFS
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Bipartite Graphs

Definition: An undirected graph ¢ = (V, E) Is bipartite

If you can partition the vertex set into 2 parts (say,
blue/red or left/right) so that

all edges join vertices in different parts
l.e., no edge has both ends in the same part.

Application:
« Scheduling: machine=red, jobs=Dblue
« Stable Matching: men=blue, woman=red

a bipartite graph
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Testing Bipartiteness
Problem: Given a graph G, is it bipartite?

Many graph problems become:
« Easier/Tractable if the underlying graph is bipartite (matching)

Before attempting to design an algorithm, we need to
understand structure of bipartite graphs.

a bipartite graph G another drawing of G



An Obstruction to Bipartiteness

Lemma: If G is bipartite, then it does not contain an odd
length cycle.

Proof: We cannot 2-color an odd cycle, let alone G.

bipartite not bipartite
(2-colorable) (not 2-colorable)



A Characterization of Bipartite Graphs

Lemma: Let G be a connected graph, and let L, ..., L, be the
layers produced by BFS(s). Exactly one of the following holds.

() No edge of G joins two nodes of the same layer, and G is
bipartite.

(i) An edge of G joins two nodes of the same layer, and
G contains an odd-length cycle (and hence is not bipartite).

Case (ii)



A Characterization of Bipartite Graphs

Lemma: Let G be a connected graph, and let L, ..., L, be the
layers produced by BFS(s). Exactly one of the following holds.

() No edge of G joins two nodes of the same layer, and G is
bipartite.

(i) An edge of G joins two nodes of the same layer, and
G contains an odd-length cycle (and hence is not bipartite).

Proof. (i)
Suppose no edge joins two nodes in the same layer.
By previous lemma, all edges join nodes on adjacent levels.

Bipartition:
blue = nodes on odd levels,
red = nodes on even levels.




A Characterization of Bipartite Graphs

Lemma: Let G be a connected graph, and let L, ..., L, be the
layers produced by BFS(s). Exactly one of the following holds.

() No edge of G joins two nodes of the same layer, and G is
bipartite.

(i) An edge of G joins two nodes of the same layer, and
G contains an odd-length cycle (and hence is not bipartite).

Proof. (i)

Suppose {x,y} Is an edge & x,y in same level L;.
Let z = their lowest common ancestor in BFS tree.
Let L; be level containing z.

Consider cycle that takes edge from x to y,
then tree from y to z, then tree from z to x.

Its lengthis 1+ (j —i) + (j — i), which is odd. vayer,

z = lca(x, y)



Obstruction to Bipartiteness

Corollary: A graph G is bipartite if and only if it contains no
odd length cycles.

Furthermore, one can test bipartiteness using BFS.

bipartite not bipartite
(2-colorable) (not 2-colorable)



Summary

BFS(s) implemented using queue.

Edges into then-undiscovered vertices define a tree —
the “Breadth First spanning tree” of ¢

Level i in the tree are exactly all vertices v s.t., the
shortest path (in ¢) from the root s to v Is of length i

All nontree edges join vertices on the same or adjacent
layers of the tree

Applications:
« Shortest Path
« Connected component
« Test bipartiteness / 2-coloring



CSE 421

Depth First Search

Yin Tat Lee
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Depth First Search

Follow the first path you find
as far as you can go; back up
to last unexplored edge when
you reach a dead end,

then go as far you can

Y

Naturally implemented using recursive calls or a stack ,=.

oy
9,
11



DFS(s) — Recursive version

Initialization: mark all vertices undiscovered

DFS(v)
Mark v discovered

for each edge {v, x}
If (x Is undiscovered)
Mark x discovered
X — parent = Uu
DFS(x)

Mark v fully-discovered

‘DEEP SEARCH
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Non-Tree Edges in DFS

BFS tree # DFS tree, but, as with BFS, DFS has found a
tree in the graph s.t. non-tree edges are "simple" in some

way.

All non-tree edges join a vertex and one of its
descendants/ancestors in the DFS tree
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Properties of (undirected) DFS

Like BFS(s):
 DFS(s) visits x iff there is a path in G from s to x

So, we can use DFS to find connected components

Edges into then-undiscovered vertices define a tree —
the "depth first spanning tree" of G

Unlike the BFS tree:

The DF spanning tree isn't minimum depth
Its levels don't reflect min distance from the root

Non-tree edges never join vertices on the same or
adjacent levels
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Non-Tree Edges in DFS

Lemma: For every undirected edge {x,y}, thenone of x or y is
an ancestor of the other in the tree.

Proof:
Suppose that x is visited first.
Therefore DFS(x) was called before DFS(y)

Since {x,y} is not in DFS tree, y was visited when the edge {x, y}
was examined during DFS(x)

Therefore y was visited during the call to DFS(x) so y is a
descendant of x.
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Non-Tree Edges (Directed Graph)

Lemma: For every directed edge (x,y), then either
e vy isvisited first or
e yisadescendant of x

( \’j. forward edge DI,/"*\‘;I
..?L_-.{'\I l?‘-—-‘{.l\
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Applications of DFS
Topological sort
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Precedence Constraints

In a directed graph, an edge (i,j) means task i must occur
before task j.

Applications
« Course prerequisite:
course i must be taken before ]
« Compilation:
must compile module i before j
« Computing overflow:
output of job i is part of input to job j
« Manufacturing or assembly:
sand it before paint it
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Directed Acyclic Graphs (DAG)

Def: A directed acyclic graph (DAG) is a graph that
contains no directed cycles.

Def. A topological order of a directed graph ¢ = (V,E) is an
ordering of its nodes as v4, v,, ..., 1, SO that for every edge
(Ul', U]) we have i < ]

a topological ordering of that DAG—
all edges left-to-right
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DAGSs: A Sufficient Condition

Lemma: If G has a topological order, then G is a DAG.

Proof. (by contradiction)

Suppose that ¢ has a topological order 1,2, ...,n and that ¢ also
has a directed cycle C.

Let i be the lowest-indexed node in C, and let j be the node just
before i; thus (j,i) is an (directed) edge.
By our choice of i, we have i < j.

On the other hand, since (j,i) is an edge and 1,2,...,nisa
topological order, we must have j < i, a contradiction

the directed cycle C

@O%—*CBOC:’)OJPO@

the supposed topological order: 1,2,...,n
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DAGSs: A Sufficient Condition

G has a topological ‘

? G is a DAG

order < : !
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Every DAG has a source node

Lemma: If G is a DAG, then G has a node with no incoming edges (i.e., a
source).

| The proof is similar to “tree has n — 1 edges”. |

Proof. (by contradiction)
Suppose that ¢ is a DAG and it has no source

Pick any node v, and begin following edges backward from v. Since v
has at least one incoming edge (u, v) we can walk backward to wu.

Then, since u has at least one incoming edge (x, u), we can walk
backward to x.

Repeat until we visit a node, say w, twice.

Let C be the sequence of nodes encountered between successive Visits
tow. C is a cycle.
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DAG => Topological Order

Lemma: If G is a DAG, then G has a topological order

Proof. (by induction on n)

Base case: trueifn = 1.

Hypothesis: Every DAG with n — 1 vertices has a topological ordering.
Inductive Step: Given DAG with n > 1 nodes, find a source node v.

G — {v}is a DAG, since deleting v cannot create cycles.

Reminder: Always remove
vertices/edges to use IH

By hypothesis, G — {v} has a topological ordering.
Place v first in topological ordering; then append nodes of ¢ — {v}
In topological order. This is valid since v has no incoming edges.
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A Characterization of DAGSs

G has a
topological order

)
—

Gis a DAG
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Quiz
How to find topological ordering in polynomial time?
Algorithm (n? time):
Function m = Order(G)

* Find a vertex v in G with no incoming edge (Time: n)
* Return (v, Order(G — {v})). (Total Time: m)

How to improve the runtime?
« Maintain the set of vertices with no incoming edge.

Alternatively, you can solve this problem by DFS.
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Topological order: 1, 2,3,4,5,6, 7



Summary for last few classes

Terminology: vertices, edges, paths, connected component, tree,
bipartite...

Vertices vs Edges: m = 0(n?) in general, m = n — 1 for trees

BFS: Layers, queue, shortest paths, all edges go to same or
adjacent layer

DFS: recursion/stack; all edges ancestor/descendant
Algorithms: Connected Comp, bipartiteness, topological sort
Techniques: Induction on vertices/layers
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