
CSE 421

Final Review

Yin Tat Lee

1

Please fill in the evaluation.

Response rate is 33% only.

https://uw.iasystem.org/survey/253736

Final Exam
Format:

~20% True / False

~20% Fill in the blank

~60% 5 questions (1 question no proof)

Time: 2:30-4:20 (Mon, Mar 14) (110min)

Location: CSE2 G20 (same room)

Open book, open note.

Coverage: Lecture 1 – 24 (everything up to NP completeness)

Topics: Graph, Greedy, Divide and Conquer, Dynamic
Programming, Maxflow, NP completeness.

Tips:

Please come up some algorithms for all questions (even if it is
slower or may not work.)

Knowing how to greedy in real life is important.

Question

Consider the following decision problems:

Problem A

Input: graph G with vertex 𝑠, 𝑡, capacity 𝑐 and integer 𝑘.

Output if the maxflow value from 𝑠 to 𝑡 is at least 𝑘.

Problem B

Input: graph G with vertex 𝑠, 𝑡, capacity 𝑐 and integer 𝑘.

Output if the maxflow value from 𝑠 to 𝑡 is at most 𝑘.

Show that problem A and B are in NP.

(Furthermore, we require the certifier takes linear time.)

Answer for problem A

Algorithm:

// 𝐺, 𝑠, 𝑡, 𝑐, 𝑘 are the input, 𝑓 is the certificate

Function C(𝐺, 𝑠, 𝑡, 𝑐, 𝑘, 𝑓)

check if 𝑓 is a 𝑠-𝑡 flow on 𝐺 with flow value ≥ 𝑘

If true, return yes, else return no.

// “Certifier returns no” does not mean the maxflow < 𝑘.

// It only means the certificate is not valid

Runtime: 𝑂(𝑚) by going through all edges of 𝐺.

Proof:

If maxflow value ≥ 𝑘, then we have a flow with value ≥ 𝑘.

Hence, we have the certificate 𝑓.

If we have the certificate 𝑓, we have a flow 𝑓 with value ≥ 𝑘,

hence maxflow value ≥ 𝑘.

Answer for problem B
Algorithm:

// 𝐺, 𝑠, 𝑡, 𝑐, 𝑘 are the input, 𝑆 is the certificate

Function C(𝐺, 𝑠, 𝑡, 𝑐, 𝑘, 𝑆)

check if the cut (𝑆, 𝑆) has capacity ≤ 𝑘

If true, return yes, else return no.

Runtime: 𝑂(𝑚) by going through all edges of 𝐺.

Proof:

If maxflow value ≤ 𝑘, then maxflow mincut theorem shows there

is a cut (𝑆, 𝑆) with capacity ≤ 𝑘. Hence, we have the certificate 𝑆.

If we have the certificate 𝑆, the weak duality of flows and cuts
shows that the maxflow value ≤ the cut capacity ≤ 𝑘.

Question

Given 2 sequences of positive numbers 𝑎1, ⋯ , 𝑎𝑛, 𝑏1, ⋯ , 𝑏𝑚.

You are allowed to insert arbitrarily many zeros at any position in

both sequences. You want to obtain sequences ෤𝑎1, ⋯ , ෤𝑎𝑘 and
෨𝑏1, ⋯ , ෨𝑏𝑘 with 𝑘 ≥ max{𝑚, 𝑛} such that the ∑෤𝑎𝑖 ෨𝑏𝑖 is maximized.

You only need to output the optimal value ∑෤𝑎𝑖 ෨𝑏𝑖.

Example:

Input: 𝑎 = (1,10,10), 𝑏 = (10,1,10)

Output: 200 (for ෤𝑎 = (1,10,0,10), ෨𝑏 = (0,10,1,10)).

Answer
Algorithm:

Let 𝑂𝑃𝑇(𝑖, 𝑗) be the OPT value for substring 𝑎1, ⋯ , 𝑎𝑖 and 𝑏1, ⋯ , 𝑏𝑗
We have

Compute 𝑂𝑃𝑇(𝑛,𝑚) using the formula above with memorization.

Runtime: Total time is 𝑂(𝑚𝑛) because:

• The recursion only reaches 𝑂𝑃𝑇(𝑖, 𝑗) for 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑗 ≤ 𝑚.

• There is no loop in the recursion since 𝑖 + 𝑗 is strictly decreasing.

• Each step takes 𝑂(1) time.

Answer

Proof:

Consider the substring 𝑎1, ⋯ , 𝑎𝑖 and 𝑏1, ⋯ , 𝑏𝑗.

Case 1) 𝑖 ≤ 0 or 𝑗 ≤ 0

There is nothing to match except 0. Hence, 𝑂𝑃𝑇 𝑖, 𝑗 = 0.

Case 2) 𝑎𝑖 matches with 𝑏𝑗 in the optimal matching

We have 𝑂𝑃𝑇 𝑖, 𝑗 = 𝑂𝑃𝑇 𝑖 − 1, 𝑗 − 1 + 𝑎𝑖𝑏𝑗.

Case 3) 𝑎𝑖 matches with 0

We have 𝑂𝑃𝑇 𝑖, 𝑗 = 𝑂𝑃𝑇 𝑖 − 1, 𝑗 + 𝑎𝑖 ⋅ 0 = 𝑂𝑃𝑇 𝑖 − 1, 𝑗 .

Case 4) 𝑏𝑗 matches with 0

We have 𝑂𝑃𝑇 𝑖, 𝑗 = 𝑂𝑃𝑇 𝑖, 𝑗 − 1 + 0 ⋅ 𝑏𝑗 = 𝑂𝑃𝑇 𝑖, 𝑗 − 1 .

Question

Assume P = NP. Given a composite number 𝑁. Find a factor 𝑎

that divides 𝑁 with 𝑎 ≠ 1 and 𝑎 ≠ 𝑁 in time log𝑂(1)𝑁.

Answer

Algorithm:

Consider the decision problem:

Input: 𝑁, 𝑙, 𝑢

Output: if there is a factor 𝑎 that divides 𝑁 such that 𝑙 ≤ 𝑎 ≤ 𝑢.

Let 𝐴(𝑁, 𝑙, 𝑢) be a poly time algorithm for the problem above.

Call 𝐹𝑖𝑛𝑑(𝑁, 2, 𝑁 − 1).

Function 𝐹𝑖𝑛𝑑(𝑁, 𝑙, 𝑢) // Find a factor 𝑎 that divides 𝑁 s.t. 𝑙 ≤ 𝑎 ≤ 𝑢

If 𝑙 = 𝑢, return 𝑙.

Let 𝑘 = (𝑙 + 𝑢)/2

If 𝐴 𝑁, 𝑙, 𝑘 = 𝑇𝑟𝑢𝑒

return 𝐹𝑖𝑛𝑑(𝑁, 𝑙, 𝑘)

else

return 𝐹𝑖𝑛𝑑(𝑁, 𝑘 + 1, 𝑢)

Answer
Runtime and Correctness:

Note that the decision problem is in NP.

The certificate is simply the factor 𝑎 and checking 𝑎 divides 𝑁 takes
polytime. (Note that the input size is log𝑁 hence, it is log𝑂(1)𝑁
time).

Using 𝑃 = 𝑁𝑃, the decision problem can be decides in log𝑂(1)𝑁
time.

Hence 𝐴 takes log𝑐 𝑁 time for some 𝑐.

Note that 𝐹𝑖𝑛𝑑 finds the factor by binary search and it calls 𝐴 with
log𝑁 times in total. Hence, 𝐹𝑖𝑛𝑑 takes log𝑐+1𝑁 time.

Each step, we ensure there is some factor 𝑎 between 𝑙 and 𝑢. This
holds initially by the input guarantee 𝑁 is composite. It is
maintained throughout the algorithm due to 𝐴(𝑁, 𝑙, 𝑘). Hence, after
log𝑁 steps of divide and conquer, it singles out one integer which
is the factor.

Question

Given numbers 𝑥𝑖𝑗 in an 𝑛 × 𝑛 2D grid. The numbers on

boundary are negative and other numbers are positive.

An element is a peak if it is strictly greater than all of its adjacent

neighbors to the left, right, top and bottom.

Give a 𝑂(𝑛 log 𝑛) time algorithm to find any peak element.

Example:

Input: Output: 4 or 3

Answer

Lemma Let 𝑦𝑖 = max
𝑗

𝑥𝑖𝑗. Suppose 𝑖 is a peak in 𝑦 and 𝑗 is the

maximum element among 𝑥𝑖𝑗. Then, (𝑖, 𝑗) is a peak in 𝑥.

Proof:

By definition of peak, 𝑦𝑖−1 ≤ 𝑦𝑖. Since 𝑦𝑖 = max
𝑗

𝑥𝑖𝑗, we have

𝑥𝑖−1,𝑗 ≤ 𝑦𝑖−1 ≤ 𝑦𝑖 = 𝑥𝑖𝑗 .

Similarly, 𝑥𝑖+1,𝑗 ≤ 𝑥𝑖𝑗. Finally, since 𝑥𝑖𝑗 is the maximum among the

same 𝑖, we have 𝑥𝑖,𝑗±1 ≤ 𝑥𝑖𝑗. Hence, (𝑖, 𝑗) is a peak in 𝑥.

This Lemma shows that it suffices to find a peak in 𝑦 in 𝑂(log 𝑛) time.

Answer

Algorithm:

Call 𝐹𝑖𝑛𝑑(2, 𝑛 − 1)

Function 𝐹𝑖𝑛𝑑(𝑙, 𝑢)

If 𝑙 = 𝑢, return 𝑙.

Let 𝑘 = (𝑙 + 𝑢)/2

If 𝑦𝑘 ≤ 𝑦𝑘+1
return 𝐹𝑖𝑛𝑑(𝑘 + 1, 𝑢)

else

return 𝐹𝑖𝑛𝑑(𝑙, 𝑘)

Runtime: 𝑂(𝑛 log 𝑛) time because of 𝑂(log 𝑛) step, each step

involves computing 𝑦 that takes 𝑂(𝑛) time.

Correctness:

We maintain that

𝑦𝑙−1 ≤ 𝑦𝑙 and 𝑦𝑢 ≥ 𝑦𝑢+1
This is true initially because boundary

numbers are negative.

In each step, we recurse according to

𝑦𝑘 ≤ 𝑦𝑘+1 or 𝑦𝑘 ≥ 𝑦𝑘+1. Hence, this is

maintained.

At the end, we have 𝑙 = 𝑢 and hence

𝑦𝑙−1 ≤ 𝑦𝑙 and 𝑦𝑙 ≥ 𝑦𝑙+1
Therefore, 𝑦𝑙 is a peak.

Question

Given a graph 𝐺 with possible negative length. Suppose that

there are only 𝑘 edges with negative length. Given some vertex

𝑠, show how to compute the shortest path length from 𝑠 to every

other vertex in 𝑂(𝑚𝑘 + 𝑘𝑛 log 𝑛) time.

You can assume there is no negative cycle.

Answer

What do we know?

• Dijkstra takes 𝑂(𝑚 + 𝑛 log 𝑛) time, only works with positive length.

• Bellman Ford takes 𝑂(𝑚𝑛) time.

Why Bellman Ford is so slow?

• Each step takes 𝑂(𝑚) time.

• After 𝑘 steps, it computes the shortest path distance using 𝑘
edges.

d = Dijkstra(𝑮, 𝒄, 𝒔, 𝒅) {

Initialize set of explored nodes 𝑺 ← {𝒔}

// Maintain distance from 𝒔 to each vertices in 𝑺

𝒅 𝒔 ← 𝟎

Insert all neighbors 𝒗 of s into a priority queue with value 𝒄(𝒔,𝒗).

while (𝑺 ≠ 𝑽)

{

// Pick an edge (𝒖, 𝒗) such that 𝒖 ∈ 𝑺 and 𝒗 ∉ 𝑺 and

// 𝒅[𝒖] + 𝒄(𝒖,𝒗) is as small as possible.

u  delete min element from 𝑸

Add 𝒗 to 𝑺 and define 𝒅[𝒗] = min(𝒅 𝒗 , 𝒅[𝒖] + 𝒄 𝒖,𝒗).

𝑷𝒂𝒓𝒆𝒏𝒕 𝒗 ← 𝒖.

foreach (edge 𝒆 = (𝒗,𝒘) incident to 𝒗)

if (𝒘 ∉ 𝑺)

if (𝒘 is not in the 𝑸)

Insert 𝒘 into 𝑸 with value 𝒅 𝒗 + 𝒄(𝒗,𝒘)
else (the key of 𝒘 > 𝒅 𝒗 + 𝒄(𝒗,𝒘))

Decrease key of 𝒗 to 𝒅[𝒗] + 𝒄(𝒗,𝒘).

}

Runtime: 𝑂(𝑚𝑘 + 𝑛𝑘 log 𝑛) because it calls Dijkstra 𝑘 + 1

times with 𝑘 Bellman Ford step.

Correctness:

Shortest paths only use at most 𝑘 negative edges.

Induction: After 𝑖 step, 𝑑𝑣 stores the shortest path distance from

𝑠 to 𝑣 using at most 𝑖 negative edges.

SPWithFewNegEdges(𝑮, 𝒄, 𝒔) {

Let 𝑮+ be the set of edges with positive length.

𝒅 𝒔 ← 𝟎, 𝒅 𝒗 ← +∞ for all 𝒗 ≠ 𝒔.

d = Dijkstra(𝑮+, 𝒄, 𝒔, 𝒅)

for (i = 𝟏, 𝟐,⋯𝒌)

{

// Bellman Ford step

𝒅𝒗
′ ← 𝒎𝒊𝒏 𝒅𝒗,𝒎𝒊𝒏 𝒖,𝒗 ∈𝑬 𝒅𝒖 + 𝒄𝒖,𝒗 for all 𝒗

// Dijkstra step

d = Dijkstra(𝑮+, 𝒄, 𝒔, 𝒅′)

}}

You can give proof very

succinctly and only get

deduct very minor points.

Answer

See more details in appendix of https://arxiv.org/abs/2203.03456.

They get almost linear time for negative shortest path.

(Opened for decades)

This question is a subroutine.

This Monday!

https://arxiv.org/abs/2203.03456

