CSE 421

Final Review
Yin Tat Lee

Please fill in the evaluation.
Response rate is 33% only.
https://uw.iasystem.org/survey/253736

Final Exam

Format:

~20% True / False

~20% Fill in the blank

~60% 5 questions (1 question no proof)

Time: 2:30-4:20 (Mon, Mar 14) (110min)

Location: CSE2 G20 (same room)

Open book, open note.

Coverage: Lecture 1 — 24 (everything up to NP completeness)

Topics: Graph, Greedy, Divide and Conquer, Dynamic
Programming, Maxflow, NP completeness.

Tips:
Please come up some algorithms for all questions (even if it is
slower or may not work.)

Knowing how to greedy in real life is important.

Question

Consider the following decision problems:

Problem A

Input: graph G with vertex s, t, capacity ¢ and integer k.
Output if the maxflow value from s to t is at least k.

Problem B
Input: graph G with vertex s, t, capacity ¢ and integer k.
Output if the maxflow value from s to t is at most k.

Show that problem A and B are in NP.
(Furthermore, we require the certifier takes linear time.)

Answer for problem A

Algorithm:
Il G,s,t,c, kare the input, f is the certificate
Function C(G, s, t, c, k, f)
check if f is a s-t flow on G with flow value > k
If true, return yes, else return no.
// “Certifier returns no” does not mean the maxflow < k.
// 1t only means the certificate is not valid

Runtime: O(m) by going through all edges of ¢.
Proof:

If maxflow value > k, then we have a flow with value > k.
Hence, we have the certificate f.

If we have the certificate f, we have a flow f with value > k,
hence maxflow value > k.

Answer for problem B

Algorithm:
Il G, s, t, c, k are the input, S is the certificate
Function C(G, s, t, c, k, S)

check if the cut (S, S) has capacity < k

If true, return yes, else return no.

Runtime: 0(m) by going through all edges of G.

Proof:

If maxflow value < k, then maxflow mincut theorem shows there
IS a cut (§,S) with capacity < k. Hence, we have the certificate S.

If we have the certificate S, the weak duality of flows and cuts
shows that the maxflow value < the cut capacity < k.

Question

Given 2 sequences of positive numbers a4, -+, ay,, by, *:*, byy,.
You are allowed to insert arbitrarily many zeros at any position in
both sequences You want to obtain sequences dy, -, and
by, , b, with k > max{m,n} such that the ¥ d;b; is maximized.

You only need to output the optimal value Yd;b;.

Example:
Input: a = (1,10,10), b = (10,1,10)
Output: 200 (for @ = (1,10,0,10), b = (0,10,1,10)).

Answer

Algorithm:

Let OPT(i,j) be the OPT value for substring a4, -+, a; and by, -+, b;
We have

(0 if i <0orj<0
([OPT(i—1,j—1)+ a;b;, |
OPT(i,) = { oLl b
max ¢ OPT(i—1,7), > else
\ \ OPT(i,j — 1))

Compute OPT (n, m) using the formula above with memorization.

Runtime: Total time is O(mn) because:

e Therecursion only reaches OPT (i,j)for0 <i<nand0 <j <m.
e Thereis noloop in the recursion since i + j is strictly decreasing.
e Each step takes O(1) time.

Answer

Proof:
Consider the substring a,, -+, a; and by, ---, b;.

Casel)i<Oorj<0
There is nothing to match except 0. Hence, OPT(i,j) = 0.

Case 2) a; matches with b; in the optimal matching
We have OPT(i,j) = OPT(i — 1,j — 1) + a;b;.

Case 3) a; matches with 0
We have OPT(i,j) = OPT(i — 1,j) + a; - 0 = OPT(i — 1,j).

Case 4) b; matches with 0
We have OPT(i,j) = OPT(i,j — 1) + 0 - b; = OPT(i,j — 1).

Question

Assume P = NP. Given a composite number N. Find a factor a
that divides N with a # 1 and a # N in time log® N.

Answer

Algorithm:
Consider the decision problem:
Input: N,[,u
Output: if there is a factor a that divides N such thatl < a < u.
Let A(N, [, u) be a poly time algorithm for the problem above.
Call Find(N,2,N — 1).
Function Find(N,l,u) // Find a factor a thatdivides Nst. [<a <u
If | = u, return [.
Letk = |(l+u)/2]
If A(N,l, k) = True
return Find(N, L, k)
else
return Find(N,k + 1,u)

Answer

Runtime and Correctness:
Note that the decision problem is in NP.

The certificate is simply the factor a and checking a divides N takes
polytime. (Note that the input size is log N hence, it is log?(») N
time).

Using P = NP, the decision problem can be decides in log®® N
time.

Hence A takes log® N time for some c.

Note that Find finds the factor by binary search and it calls A with
log N times in total. Hence, Find takes log¢*! N time.

Each step, we ensure there is some factor a between [and u. This
holds initially by the input guarantee N is composite. Itis
maintained throughout the algorithm due to A(N, [, k). Hence, after
log N steps of divide and conquer, it singles out one integer which
IS the factor.

Question

Given numbers x;; in ann X n 2D grid. The numbers on
boundary are negative and other numbers are positive.

An element is a peak if it is strictly greater than all of its adjacent
neighbors to the left, right, top and bottom.

Give a O(nlogn) time algorithm to find any peak element.

Example:
Input:

Output: 4 or 3

Answer

Lemma Let y; = maxx;;. Suppose i Iis a peak in y and j is the
J

maximum element among x;;. Then, (i,j) Is a peak in x.

Proof:
By definition of peak, y;_; < y;. Since y; = maxx;;, we have
J

Xi-1,j < Yi-1 S Vi = Xij-
Similarly, x;,1 ; < x;;. Finally, since x;; Is the maximum among the
same i, we have x; ;11 < x;;. Hence, (i,j) is a peak in x.

This Lemma shows that it suffices to find a peak in y in O(logn) time.

Answer

Algorithm: Correctness:
Call Find(2,n — 1) We maintain that
. . Yi-1 Syrand yy = yyiq
Function Find(l,u) This is true initially because boundary
If | = u, return L. numbers are negative.

Letk =|(l+u)/2
L()/ 2] In each step, we recurse according to

T Vi < Vi Vie < Yk+1 OF Vi = Vi4+1. Hence, this is
return Find(k + 1,u) maintained.
else

At the end, we have [= u and hence

Vi-rSyrandy; =y
Therefore, y; Is a peak.

return Find(l, k)

Runtime: O(nlogn) time because of O(logn) step, each step
Involves computing y that takes 0(n) time.

Question

Given a graph G with possible negative length. Suppose that
there are only k edges with negative length. Given some vertex
s, show how to compute the shortest path length from s to every
other vertex in O(mk + knlogn) time.

You can assume there is no negative cycle.

Answer

What do we know?

* Dijkstra takes 0(m + nlogn) time, only works with positive length.
* Bellman Ford takes O(mn) time.

Why Bellman Ford is so slow?
« Each step takes 0(m) time.

« After k steps, it computes the shortest path distance using k
edges.

d = Dijkstra(G,c,s,d) {
Initialize set of explored nodes S « {s}

// Maintain distance from s to each vertices in §

—dfs}—o

Insert all neighbors v of s into a priority queue with value ().

while (S #V)

{
// Pick an edge (u,v) such that u €S and v¢ S and

// dlu] + ¢y is as small as possible.
u < delete min element from Q

Add v to § and define d[v] = min(d[v] d[u] + cg.)) -
Parent(v) « u.

foreach (edge e = (v,w) incident to v)
if (wegs)
if (w is not in the Q)
Insert w into Q with value d[v]+ ¢y
else (the key of w > d[v]+ cuw))
Decrease key of v to d[v]+cuuw)-

SPWithFewNegEdges (G,c,s) {

Let G' be the set of edges with positive length.
d[s] <« 0, d[v] « +©o for all v+s.
d = Dijkstra(G', cs,d)
for (i = 1,2,-- k)
{
// Bellman Ford step

d;,, — min (dv, min(u,v)EE(du + cu,v)) for all v

// Dijkstra step
d = Dijkstra(G*,c,s,d')
}}

Runtime: O(mk + nklogn) because it calls Dijkstra k + 1

times with k Bellman Ford step. _
You can give proof very

succinctly and only get
Correctness:. deduct very minor points.

Shortest paths only use at most k negative edges.

Induction: After i step, d,, stores the shortest path distance from
s to v using at most i negative edges.

Answer

See more detalls in appendix of https://arxiv.org/abs/2203.03456.
They get almost linear time for negative shortest path.

(Opened for decades)

This question is a subroutine.

Negative-Weight Single-Source Shortest Paths in Almost-linear This Monday!

Time
(Preliminary Version)

Aaron Bernstein* Danupon Nanongkaif Christian Wulff-Nilsen*

Abstract

We present a randomized algorithm that computes single-source shortest paths (SSSP) in
m!' oM log W time when edge weights are integral and can be negative.! This essentially re-
solves classic negative-weight SSSP problem. The previous bounds are O((m! + n'-?)log W)
[BLNPSSSW FOCS'20] and m*/3+°(1) log W [AMV FOCS'20|. In contrast to all recent devel-
opments that rely on sophisticated continuous optimization methods and dynamic algorithms,
our algorithm is based on a simple graph decomposition and elementary combinatorial tools.
In fact, ours is the first combinatorial algorithm for negative-weight SSSP to break through the
classic O(m v/1log W) bound from over three decades ago [Gabow and Tarjan SICOMP’89]. Be-
side being combinatorial, an important feature of our algorithm is in its simplicity: treating our
graph decomposition as a black-box, we believe that the reader can reconstruct our algorithm
and analysis from our 6-page overview.

Independent result. Independently from our result, the recent major breakthrough by Chen,
Kyng, Liu, Peng, Gutenberg, and Sachdeva [CKL"22] achieve an almost-linear time bound for
min-cost flow, implying the same bound for our problem. We discuss this result at the end of
the introduction.

https://arxiv.org/abs/2203.03456

