CSE 421

Linear Programs

Yin Tat Lee
Linear Program

Consider the linear program (LP)

$$\min \quad c^T x$$

$$Ax \geq b$$

where A is a $m \times n$ matrix.

- $m = \text{the number of constraints}$
- $n = \text{the number of variables}$

- Example: Flight crew scheduling problem by American Airlines

\[m = 12,750,000, n = 837 \]
Simplex Method [Dantzig 47]

First generation of LP solver.
Efficient in practice
Exponential time in worst case

When applied to MaxFlow, it is exactly augmenting path.
Ellipsoid Method [Shor; Nemirovski-Yudin; Khachiyan 70s]

First polynomial time algorithm for LP.

Very important in theory.

Slow in practice.

\[K = \{ Ax \geq b, c^T x \leq OPT \} \]
Interior Point Methods [Karmarkar 1984]

Simplex Method

Interior Point Methods

Best algorithms in theory and one of the best in practice

Source: Time Magazine
Techniques

Simplex Method is an example of Iterative Method

Ellipsoid Method is an example of Divide and Conquer

Interior Point Method is an example of Homotopy Method
Simplex Method
If the polytope is perturbed,
of steps \leq roughly n^2.

Start with a vertex
In each step,
move to a lower vertex

Problem: Number of vertices
on this path can be
exponential!
Simplex: how to find initial vertex?

\[
\text{maximize } c^T x \\
\text{subject to } Ax \leq b \\
x \geq 0
\]
Simplex: how to go to better vertex?

\[
\begin{align*}
\text{maximize} & \quad c^\top x \\
\text{subject to} & \quad Ax \leq b \\
x & \geq 0
\end{align*}
\]

1. There must be $\hat{A}x = \hat{b}$.
2. Find y satisfying $n - 1$ of the equations, $c^\top y > 0$.
3. Change $x = x + \epsilon y$, until some new equation becomes tight.

Open Problem:
Can we have a rule to select new vertex such that # of steps are polynomially bounded?
Interior Point Method
Constrained to Unconstrained

\[
\begin{align*}
\min_{Ax \geq b} & \quad c^T x \\
& \text{(Barrier Function)}
\end{align*}
\]

- Difficulties lie in the polytope constraint \(\{Ax \geq b\} \)
- Smooth function is easier to minimize
- **Replace the constraint by a smooth function**

Requirements for barrier function:
- Smooth
- Blow up on the boundary
Example: Log Barrier Function

\[p(x) = \sum_{i=1}^{m} \log \left(\frac{1}{s_i(x)} \right) \]

- \(s_i(x) \) is the distance from \(x \) to constraint \(i \)
- \(p \) blows up when \(x \) close to boundary

You can view this “physically”.
Central Path

\[\min_{Ax \geq b} c^T x \sim \min_{x} c^T x + p(x) \]

Repeat

- Compute \(\min_{x} c^T x + t \cdot p(x) \)
- Decrease \(t \)

What barrier function \(p \) should we pick?

- Karmarkar used log barrier function.
- Nesterov and Nemirovskii used universal barrier function.
Central Path

\[
\min_{Ax \geq b} c^T x \sim \min_{x} c^T x + t \cdot p(x)
\]

Repeat

- Compute \(\min_{x} c^T x + t \cdot p(x) \)
- Decrease \(t \)

What barrier function \(p \) should we pick?

- \(p \) is easy to compute
- Central path is smooth.

\(t = 1 \)
Condition For a Good Barrier Function

Observation: easy to optimize over ellipsoid. Approximate the polytope by ellipsoids!
Condition For a Good Barrier Function

Observation: easy to optimize over ellipsoid. Approximate the polytope by ellipsoids!

#iter depends on how well E approximates K.

Say E is a T-approximation of K if

$$E \subset K \subset T \cdot E$$

IPM takes T iters if E_x is a T-approximation of K_x for all x.
Log Barrier depends on representation

\[
\{0 \leq x \leq 1, 0 \leq y \leq 1\}
\]

\[
\{0 \leq y \leq 1, 0 \leq x \leq 1, 0 \leq x \leq 1, \ldots\}
\]

repeated \(m\) times

\[
1/\sqrt{m}
\]
Condition For a Good Barrier Function

Observation: easy to optimize over ellipsoid. Approximate the polytope by ellipsoids!

#iter depends on how well E approximates K.

Say E is a T-approximation of K if

$$E \subset K \subset T \cdot E$$

IPM takes $T \text{ iters}$ if E_x is a T-approximation of K_x for all x.
Ellipsoid

Ellipsoid: a squished ball

\[x^2 + y^2 \leq 1 \]

\[(2(x - 1))^2 + ((y - 1)/2)^2 \leq 1 \]

Ratio of area of ellipsoid to sphere:

\[\frac{1}{2} \cdot \frac{2}{1} = 1 \]
Ellipsoid

Let U^{-1} be the linear transformation corresponding to a rotation.

Ellipsoid: a squished ball

$$(2(U_1(x, y) - 1))^2 + ((U_2(x, y) - 1)/2)^2 \leq 1$$

$$(U_1(x, y))^2 + (U_2(x, y))^2 \leq 1$$

Ratio of area of ellipsoid to sphere:

$$\frac{1}{2} \cdot \frac{2}{1} = 1$$

$$(2U_1(x, y))^2 + (U_2(x, y)/2)^2 \leq 1$$
John Ellipsoid

For any polytope K, let $J(K)$ be the maximum ellipsoid inside K.

Theorem
If K is symmetric, $J(K)$ is a \sqrt{n} approximation of K.

Furthermore,
$J(K)$ can be approximated by solving $O(1)$ linear systems.
John Ellipsoid Barrier

\[p(x) = -\log(\text{vol}(J(K_x))) \]

- \(J(K_x) \) is the largest ellipsoid centered at \(x \).
- It does not depend on representation.
- It involves volume computation but is volume of ellipsoid!
 - Universal barrier involves volume of polytope which is much **harder**.
Algorithm:
• Update John ellipsoid
• Push the cost constraint
• Repeat
Ellipsoid Method

\[K = \{ Ax \geq b, c^T x \leq OPT \} \]
Convex Minimization

Minimize a general convex function f

Assume:
- Access the function by computing gradient
- f is not exponentially large or the solution is not exponentially far away.

Goal: decrease the error $f(x_k) - \text{OPT}$ exponentially.

Consequence: can handle constraints

Example: linear program, logistic regression

Why linear program is a convex function?
Why can we solve in 1 dimension?

Binary search!
Convexity Allows Us to Cut

How to do binary search in high dimension?
Ellipsoid Method [Shor; Nemirovski-Yudin; Khachiyan 70s]

• For $k = 0, 1, \ldots$
 • Compute gradient at center of Ω_k
 • Let Ω_{k+1} be the smallest ellipsoid containing $\Omega_k \cap \{\text{Half Space}\}$.

New volume is at most $1 - \frac{1}{n}$ of old volume.

$O(n^2 \log(1/\varepsilon))$ iterations.

$O(n^2)$ time per iteration.
John Ellipsoid Method

• For $k = 0, 1, \ldots$
 • Compute largest ellipsoid inside Ω_k (John Ellipsoid)
 • Compute gradient at the center.
 • Let $\Omega_{k+1} = \Omega_k \cap \{\text{Half Space}\}$.

New volume is at most 0.9 of old volume.

$O(n \log(1/\varepsilon))$ iterations. [Khachiyan 88]

$O(n^{2.88})$ time per iteration. [Nesterov-Nemirovskii 89]

Improved to $O(n^{2.38})$ using slightly different ellipsoid. [Vaidya 89]

Further improved to $O(n^2)$. [2020]