

Linear Programs

Yin Tat Lee

Linear Program

where A is a $m \times n$ matrix.

Consider the linear program (LP)

- *m* = the number of constraints
- n = the number of variables
- Example: Flight crew scheduling problem by American Airlines n = 12,750,000, n = 837

 $a_3^T x \ge b_3$

m = 3, n = 2

Simplex Method [Dantzig 47]

First generation of LP solver.

Efficient in practice Exponential time in worst case

When applied to MaxFlow, it is exactly augmenting path.

A Soviet Discovery Rocks World of Mathematics Source: New York Times

Ellipsoid Method [Shor; Nemirovski-Yudin; Khachiyan 70s]

First polynomial time algorithm for LP.

Very important in theory.

Slow in practice.

Interior Point Methods [Karmarkar 1984]

Folding the Perfect Corner

Source: Time Magazine

Techniques

Simplex Method is an example of Iterative Method Ellipsoid Method is an example of Divide and Conquer

Interior Point Method is an example of Homotopy Method

Simplex Method

Simplex

If the polytope is perturbed, # of steps \leq roughly n^2 .

Start with a vertex In each step, move to a lower vertex

Problem: Number of vertices on this path can be exponential!

Simplex: how to find initial vertex?

maximize $c^{\mathsf{T}}x$ subject to $Ax \le b$ $x \ge 0$

Simplex: how to go to better vertex?

maximize $c^{\mathsf{T}}x$ subject to $Ax \le b$ $x \ge 0$

 There must be Âx = b̂.
Find y satisfying n - 1 of the equations, c^Ty > 0.
Change x = x + ey, until some new equation becomes tight.

Open Problem:

Can we have a rule to select new vertex such that # of steps are polynomially bounded?

Interior Point Method

Constrained to Unconstrained

(Barrier Function)

$\min_{Ax \ge b} c^{\top} x$

- Difficulties lie in the polytope constraint $\{Ax \ge b\}$
- Smooth function is easier to minimize
- Replace the constraint by a smooth function

Requirements for barrier function:

- Smooth
- Blow up on the boundary

Example: Log Barrier Function

 $p(x) = \sum_{i=1}^{m} \log\left(\frac{1}{s_i(x)}\right)$

• $s_i(x)$ is the distance from x to constraint i

p blows up when *x* close to boundary

You can view this "physically".

Central Path

$$\min_{Ax \ge b} c^{\mathsf{T}} x \sim \min_{x} c^{\mathsf{T}} x + p(x) \qquad t =$$

- Compute $\min_{x} c^{\mathsf{T}} x + t \cdot p(x)$
- Decrease t

Repeat

What barrier function *p* should we pick?

- Karmarkar used log barrier function.
- Nesterov and Nemirovskii used universal barrier function.

Central Path

• Central path is smooth.

Condition For a Good Barrier Function

Observation: easy to optimize over ellipsoid. KApproximate the polytope by ellipsoids!

K

Condition For a Good Barrier Function

Observation: easy to optimize over ellipsoid. Approximate the polytope by ellipsoids!

#iter depends on how well *E* approximates *K*. Say *E* is a *T*-approximation of *K* if $E \subset K \subset T \cdot E$

IPM takes **T** iters if E_x is a **T**-approximation of K_x for all x.

Log Barrier depends on representation

Condition For a Good Barrier Function

Observation: easy to optimize over ellipsoid. Approximate the polytope by ellipsoids!

#iter depends on how well *E* approximates *K*. Say *E* is a *T*-approximation of *K* if $E \subset K \subset T \cdot E$

IPM takes **T** iters if E_x is a **T**-approximation of K_x for all x.

Ellipsoid

Ellipsoid

 $(2U_1(x,y))^2 + (U_2(x,y)/2)^2 \le 1$

John Ellipsoid

For any polytope K, let J(K) be the maximum ellipsoid inside K.

K

<u>Theorem</u>

If K is symmetric, J(K) is a \sqrt{n} approximation of K.

Furthermore, J(K) can be approximated by solving $\tilde{O}(1)$ linear systems.

John Ellipsoid Barrier

 $p(x) = -\log(\operatorname{vol}(J(K_x)))$ (illustration only)

• $J(K_x)$ is the largest ellipsoid centered at x.

- It involves volume computation but is volume of ellipsoid!
 - Universal barrier involves volume of polytope which is much harder.

Alternative View

Algorithm:

- Update John ellipsoid
- Push the cost constraint
- Repeat

Ellipsoid Method

Convex Minimization

Minimize a general convex function *f* Assume:

- Access the function by computing gradient
- *f* is not exponentially large or the solution is not exponentially far away.

Goal: decrease the error $f(x_k) - OPT$ exponentially.

Consequence: can handle constraints

Example: linear program, logistic regression

Why linear program is a convex function?

f is convex if

 $\frac{1}{2}(f(x) + f(y)) \ge f(\frac{x+y}{2})$

Why can we solve in 1 dimension?

Binary search!

Convexity Allows Us to Cut

How to do binary search in high dimension?

Ellipsoid Method [Shor; Nemirovski-Yudin; Khachiyan 70s]

 Ω_1

 Ω_{0}

minimizer

- For $k = 0, 1, \cdots$
 - Compute gradient at center of Ω_k
 - Let Ω_{k+1} be the smallest ellipsoid containing $\Omega_k \cap \{\text{Half Space}\}.$

```
New volume is at most 1 - \frac{1}{n} of old volume.
```

 $O(n^2 \log(1/\varepsilon))$ iterations. $O(n^2)$ time per iteration.

John Ellipsoid Method

John Ellipsoid Method never throws away information.

minimizer

• For $k = 0, 1, \cdots$

- Compute largest ellipsoid inside Ω_k (John Ellipsoid)
- Compute gradient at the center.
- Let $\Omega_{k+1} = \Omega_k \cap \{\text{Half Space}\}.$

New volume is at most 0.9 of old volume.

 $O(n \log(1/\varepsilon))$ iterations. [Khachiyan 88] $O(n^{2.88})$ time per iteration. [Nesterov-Nemirovskii 89] Improved to $O(n^{2.38})$ using slightly different ellipsoid. [Vaidya 89] Further improved to $O(n^2)$. [2020]

Haotian

UW PhD

 Ω_0

 Ω_1