CSE 421

NP-Completeness

Yin Tat Lee
Map a 3-CNFS to \((V, k)\). Say \(m\) is number of clauses

- Create a vertex for each literal
- Joint two literals if
 - They belong to the same clause (blue edges)
 - The literals are negations, e.g., \(x_i, \bar{x}_i\) (red edges)
- Set \(k\) be the \# of clauses.

\[
(x_1 \lor \bar{x}_3 \lor x_4) \land (x_2 \lor \bar{x}_4 \lor x_3) \land (x_2 \lor \bar{x}_1 \lor x_3)
\]
Correctness of 3-SAT \leq_p Indep Set

F satisfiable \Rightarrow An independent of size k
Given a satisfying assignment, Choose one node from each clause where the literal is satisfied

$$(x_1 \lor \overline{x_3} \lor x_4) \land (x_2 \lor \overline{x_4} \lor x_3) \land (x_2 \lor \overline{x_1} \lor x_3)$$

Satisfying assignment: $x_1 = T, x_2 = F, x_3 = T, x_4 = F$

- S has exactly one node per clause \Rightarrow No blue edges between S
- S follows a truth-assignment \Rightarrow No red edges between S
- S has one node per clause \Rightarrow $|S| = k$
Correctness of 3-SAT \leq_p Indep Set

An independent set of size k \Rightarrow A satisfying assignment
Given an independent set S of size k.
S has exactly one vertex per clause (because of blue edges)
S does not have x_i, \overline{x}_i (because of red edges)
So, S gives a satisfying assignment

Satisfying assignment: $x_1 = F, x_2 = ?, x_3 = T, x_4 = T$
$(x_1 \lor \overline{x}_3 \lor x_4) \land (x_2 \lor \overline{x}_4 \lor x_3) \land (x_2 \lor \overline{x}_1 \lor x_3)$
More NP-completeness

• Subset-Sum problem
 (Decision version of Knapsack)
 • Given n integers w_1,\ldots,w_n and integer W
 • Is there a subset of the n input integers that adds up to exactly W?

• $O(nW)$ solution from dynamic programming but if W and each w_i can be n bits long then this is exponential time
3-SAT \leq_P \text{Subset-Sum}

• Given a 3-CNF formula with m clauses and n variables
• Will create $2m + 2n$ numbers that are $m + n$ digits long
 Two numbers for each variable x_i
 • t_i and f_i (corresponding to x_i being true or x_i being false)
 Two extra numbers for each clause
 • u_j and v_j (filler variables to handle number of false literals in clause C_j)
3-SAT \leq_p Subset-Sum

$$C_3 = (x_1 \lor \neg x_2 \lor x_5)$$

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 2 3 4 ... n</td>
<td>1 2 3 4 ... m</td>
</tr>
<tr>
<td>t_1</td>
<td>1 0 0 0 ... 0 0 0 1 0 ... 1</td>
<td></td>
</tr>
<tr>
<td>f_1</td>
<td>1 0 0 0 ... 0 1 0 0 1 ... 0</td>
<td></td>
</tr>
<tr>
<td>t_2</td>
<td>0 1 0 0 ... 0 0 1 0 0 ... 1</td>
<td></td>
</tr>
<tr>
<td>f_2</td>
<td>0 1 0 0 ... 0 0 0 1 1 ... 0</td>
<td></td>
</tr>
<tr>
<td>$u_1 = v_1$</td>
<td>0 0 0 0 ... 0 1 0 0 0 ... 0</td>
<td></td>
</tr>
<tr>
<td>$u_2 = v_2$</td>
<td>0 0 0 0 ... 0 0 1 0 0 ... 0</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>1 1 1 1 ... 1 3 3 3 3 ... 3</td>
<td></td>
</tr>
</tbody>
</table>
Graph Colorability

• **Defn:** Given a graph $G=(V,E)$, and an integer k, a k-coloring of G is
 an assignment of up to k different colors to the vertices of G so that the endpoints of each edge have different colors.

• **3-Color:** Given a graph $G=(V,E)$, does G have a 3-coloring?

• **Claim:** 3-Color is NP-complete

• **Proof:** 3-Color is in NP:
 Certificate is an assignment of red, green, blue to the vertices of G
 Easy to check that each edge is colored correctly
3-SAT \leq_p 3-Color

• Reduction:
 We want to map a 3-CNF formula F to a graph G so that
 • G is 3-colorable iff F is satisfiable
3-SAT \leq_p 3-Color

Base Triangle
3-SAT \leq_p 3-Color

Variable Part:
in 3-coloring, variable colors correspond to some truth assignment (same color as T or F)
3-SAT \leq_p 3-Color

Clause Part:
Add one 6 vertex gadget per clause connecting its ‘outer vertices’ to the literals in the clause.
Any truth assignment satisfying the formula can be extended to a 3-coloring of the graph.
3-SAT $\leq P$ 3-Color

Any 3-coloring of the graph colors each gadget triangle using each color
Any 3-coloring of the graph has an F opposite the O color in the triangle of each gadget.
Any 3-coloring of the graph has T at the other end of the blue edge connected to the F.

3-SAT \leq_P 3-Color
Summary

• If a problem is NP-hard it does not mean that all instances are hard, e.g., Vertex-cover has a polynomial-time algorithm in trees

• We learned the crucial idea of polynomial-time reduction. This can be even used in algorithm design, e.g., we know how to solve max-flow so we reduce bipartite matching to max-flow

• NP-Complete problems are the hardest problem in NP

• NP-hard problems may not necessarily belong to NP.

• Polynomial-time reductions are transitive relations
CSE 421

Vertex Cover / Set Cover

Yin Tat Lee
Approximation Algorithms
How to deal with NP-complete Problem

Many of the important problems are NP-complete.

SAT, Set Cover, Graph Coloring, TSP, Max IND Set, Vertex Cover, …

So, we cannot find optimum solutions in polynomial time. What to do instead?

• Find optimum solution of special cases (e.g., random inputs)

• Find near optimum solution in the worst case
We call an algorithm has approximation ratio $\alpha(n)$ if

$$\frac{\text{Cost of computed solution}}{\text{Cost of the optimum}} \leq \alpha(n)$$

for any input of length n. (worst case)

Goal: For each NP-hard problem find an poly-time approximation algorithm with the best possible approximation ratio.
Vertex Cover

Given a graph $G = (V, E)$, find the smallest set of vertices touching every edge.
Greedy algorithms are typically used in practice to find a (good) solution to NP-hard problems

Strategy (1): Iteratively, include a vertex that covers most new edges

Q: Does this give an optimum solution?
A: No,
Greedy (1): Pick vertex that covers the most

\[B_1 \quad B_2 \quad B_3 \quad B_4 \]
Greedy (1): Pick vertex that covers the most

Greedy Vertex cover = 20

OPT Vertex cover = 8
Greedy (1): Pick vertex that covers the most

Greedy Vertex cover = 20

OPT Vertex cover = 8
Greedy (1): Pick vertex that covers the most

n vertices. Each vertex has one edge into each B_i

Greedy pick bottom vertices $= n + \frac{n}{2} + \frac{n}{3} + \cdots + 1 \approx n \ln n$

OPT pick top vertices $= n$
A Different Greedy Rule

Greedy 2: Iteratively, pick *both endpoints* of an uncovered edge.

Vertex cover $= 6$
Greedy 2: Pick Both endpoints of an uncovered edge

Greedy vertex cover = 16
OPT vertex cover = 8
Thm: Size of greedy (2) vertex cover is at most twice as big as size of optimal cover

Pf: Suppose Greedy (2) picks endpoints of edges e_1, \ldots, e_k. Since these edges do not touch, every valid cover must pick one vertex from each of these edges! i.e., $OPT \geq k$.

But the size of greedy cover is $2k$. So, Greedy is a 2-approximation.
Set Cover

Given a number of sets on a ground set of elements,

Goal: choose minimum number of sets that cover all.

e.g., a company wants to hire employees with certain skills.
Set Cover

Given a number of sets on a ground set of elements,

Goal: choose minimum number of sets that cover all.

Set cover = 4
A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered
A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered
A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered
A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered
A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered

Thm: Greedy has $\ln n$ approximation ratio
A Tight Example for Greedy

Greedy = 5

OPT = 2
Greedy Gives $O(\log(n))$ approximation

Thm: If the best solution has k sets, greedy finds at most $k \ln(n)$ sets.

Pf: Suppose $OPT = k$
There is set that covers $1/k$ fraction of remaining elements, since there are k sets that cover all remaining elements.
So in each step, algorithm will cover $1/k$ fraction of remaining elements.

#elements uncovered after t steps

\[
\leq n \left(1 - \frac{1}{k}\right)^t \leq ne^{-\frac{t}{k}}
\]

So after $t = k \ln n$ steps, # uncovered elements < 1.
Approximation Algorithm Summary

• The best known approximation algorithm for set cover is the greedy.
 – It is NP-Complete to obtain better than $\ln(n)$ approximation ratio for set cover.

• The best known approximation algorithm for vertex cover is the greedy.
 – It has been open for 40 years to obtain a polynomial time algorithm with approximation ratio better than 2

• There is a long list of questions we do not know the best approximation algorithm.

• https://en.wikipedia.org/wiki/Unique_games_conjecture