
CSE 421

NP-Completeness

Yin Tat Lee

1

Computational Complexity

Goal: Classify problems according to the amount of

computational resources used by the best algorithms that

solve them

Here we focus on time complexity

Recall: worst-case running time of an algorithm

• max # steps algorithm takes on any input of size n

2

3

• Want a notion that allows us to compare the complexity
of problems

• Want to be able to make statements of the form

“If we could solve problem B in polynomial time
then we can solve problem A in polynomial time”

“Problem B is at least as hard as problem A”

Relative Complexity of Problems

Polynomial Time Reduction

Def A P B: if there is an algorithm for problem A using a
‘black box’ (subroutine) that solve problem B s.t.,
• Algorithm uses only a polynomial number of steps

• Makes only a polynomial number of calls to a subroutine for B

So,

Conversely,

In words, B is as hard as A (it can be even harder)

4

B is Polynomial

time solvable

A is Polynomial

time solvable

No efficient

Algorithm for A

No efficient

Algorithm for B

≤𝑝
1 Reductions

Here, we often use a restricted form of polynomial-time

reduction often called Karp reduction.

𝐴 ≤𝑝
1 𝐵: if and only if there is an algorithm for A given a

black box solving B that on input x

• Runs for polynomial time computing an input f(x) of B

• Makes one call to the black box for B for input f(x)

• Returns the answer that the black box gave

We say that the function f(.) is the reduction

5

6

Let A = bipartite matching. Let B = maxflow.

We know how to solve bipartite matching by calling maxflow
once.

So, it may look like the answer is

Both 𝐴 ≤𝑝 𝐵 and 𝐴 ≤𝑝
1 𝐵.

However, since both problems can be solved in polynomial time,
one valid reduction would be simply doing nothing.

Hence, all statements are true. So, ≤𝑝 is mainly to distinguish if
a problem is in P or not.

Answer

7

There are recent work on distinguishing different polytime.

Fine-Grained Complexity

8

Indep Set: Given G=(V,E) and an integer k, is there 𝑆 ⊆ 𝑉 s.t.
𝑆 ≥ 𝑘 and no two vertices in S are joined by an edge?

Clique: Given G=(V,E) and an integer k, is there 𝑆 ⊆ 𝑉, |U| k
s.t., every pair of vertices in S is joined by an edge?

Claim: Indep Set ≤𝑝 Clique

Pf: Given 𝐺 = (𝑉, 𝐸) and instance of indep Set. Construct a new
graph 𝐺′ = (𝑉, 𝐸′) where 𝑢, 𝑣 ∈ 𝐸′ if and only if 𝑢, 𝑣 ∉ 𝐸.

Example 1: Indep Set ≤𝑝 Clique

9

S is an indep set

in G

S is a clique

in G’

1

2

3 4

5

1

2

3 4

5

Example 2: Vertex Cover ≤𝑝 Indep Set

Vertex Cover: Given G=(V,E) and an integer k, is there a vertex
cover of size at most k?

Claim: For any graph 𝐺 = 𝑉, 𝐸 , S is an independent set iff
𝑉 − 𝑆 is a vertex cover

Pf: =>

Let S be an independent set of G

Then, 𝑆 has at most one endpoint of every edge of G

So, 𝑉 − 𝑆 has at least one endpoint of every edge of G

So, 𝑉 − 𝑆 is a vertex cover.

<= Suppose 𝑉 − 𝑆 is a vertex cover

Then, there is no edge between vertices of S (otherwise, 𝑉 − 𝑆 is
not a vertex cover)

So, 𝑆 is an independent set.

10

Example 3: Vertex Cover ≤𝑝 Set Cover

Set Cover: Given a set U, collection of subsets 𝑆1, … , 𝑆𝑚 of U and
an integer k, is there a collection of k sets that contain all
elements of U?

Claim: Vertex Cover ≤𝑝 Set Cover

Pf:

Given (𝐺 = 𝑉, 𝐸 , 𝑘) of vertex cover we construct a set cover
input 𝑓(𝐺, 𝑘)
• 𝑈 = 𝐸
• For each 𝑣 ∈ 𝑉 we create a set 𝑆𝑣 of all edges connected to 𝑣

This clearly is a polynomial-time reduction

So, we need to prove it gives the right answer

11

Example 3: Vertex Cover ≤𝑝 Set Cover

Claim: Vertex Cover ≤𝑝 Set Cover

Pf: Given (𝐺 = 𝑉, 𝐸 , 𝑘) of vertex cover we construct a set cover
input 𝑓(𝐺, 𝑘)
• 𝑈 = 𝐸
• For each 𝑣 ∈ 𝑉 we create a set 𝑆𝑣 of all edges connected to 𝑣

Vertex-Cover (G,k) is yes => Set-Cover f(G,k) is yes

If a set 𝑊 ⊆ 𝑉 covers all edges, just choose 𝑆𝑣 for all 𝑣 ∈ 𝑊, it
covers all 𝑈.

Set-Cover f(G,k) is yes => Vertex-Cover (G,k) is yes

If (𝑆𝑣1 , … , 𝑆𝑣𝑘) covers all 𝑈, the set {𝑣1, … , 𝑣𝑘} covers all edges
of G.

12

Decision Problems

A decision problem is a computational problem where the
answer is just yes/no

Here, we study computational complexity of decision Problems.

Why?

• Simpler to deal with

• Decision version is not harder than Search version, so it gives
a lower bound for Decision version

• usually, you can use decider multiple times to find an answer.

13

Polynomial Time

Define P (polynomial-time) to be the set of all decision

problems solvable by algorithms whose worst-case running

time is bounded by some polynomial in the input size.

Do we understand P?

• We can prove that a problem is in P by exhibiting a

polynomial time algorithm

• It is in most cases very hard to prove a problem is not in

P.

14

Beyond P?

We have seen many problems that seem hard

• Independent Set

• 3-coloring

• Vertex Cover

• 3-SAT

Given a formula 𝑥1 ∨ 𝑥2 ∨ 𝑥9 ∧ 𝑥2 ∨ 𝑥3 ∨ 𝑥7 ∧ ⋯, is there a

satisfying assignment?

Common Property: If the answer is yes, there is a “short” proof

(a.k.a., certificate), that allows you to verify (in polynomial-time)

that the answer is yes.

• The proof may be hard to find

15

The independent set S

The 3-coloring

The vertex cover S

The T/F assignment

Decision Problems

A decision problem is a computational problem where the
answer is just yes/no.

We can define a problem by a set 𝑋 ⊂ 0,1 𝑛.

The answer for the input 𝑠 is YES iff 𝑠 ∈ 𝑋.

Certifier: Algorithm C(s, t) is a certifier for problem A if

𝑠 ∈ 𝑋 if and only if (There is a 𝑡 such that 𝐶 𝑠, 𝑡 = 𝑌𝐸𝑆))

NP: Set of all decision problems for which there exists a poly-
time certifier.

Co-NP: 𝑋 ∈ 𝑐𝑜 − 𝑁𝑃 if and only if 𝑋 ∈ 𝑁𝑃.

16

Example: 3SAT is in NP

Given a 3-CNF formula, is there a satisfying assignment?

(conjunctive normal form (CNF) is AND of ORs)

Certificate: An assignment of truth values to the n boolean

variables.

Verifier: Check that each clause has at least one true

literal.

Ex: 𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥3 ∧ (𝑥2 ∨ 𝑥1 ∨ 𝑥3)

Certificate: 𝑥1 = 𝑇, 𝑥2 = 𝐹, 𝑥3 = 𝑇, 𝑥4 = 𝐹

Conclusion: 3-SAT is in NP

17

Question: Is Maxflow is in NP?

Decision problem: Is the maximum flow value = k?

Answer 1:

Certificate: A flow 𝑓 and a cut 𝑆, 𝑆

Verifier: Check if 𝑣𝑎𝑙 𝑓 = 𝑐𝑎𝑝(𝑆, 𝑆)

Answer 2:

Certificate: None

Verifier: Any polynomial time maxflow algo.

18

What do we know about NP?

• Nobody knows if all problems in NP can be done in

polynomial time, i.e. does P=NP?

• one of the most important open questions in all of science.

• Huge practical implications specially if answer is yes

• Every problem in P is in NP

one doesn’t even need a certificate for problems in P so just

ignore any hint you are given

• Every problem in NP is in exponential time

• Some problems in NP seem really hard

• nobody knows how to prove that they are really hard to

solve, i.e. 𝑃 ≠ 𝑁𝑃

19

NP Completeness

Complexity Theorists Approach: We don’t know how to prove
any problem in NP is hard. So, let’s find hardest problems in NP.

NP-hard: A problem B is NP-hard iff for any problem 𝐴 ∈ 𝑁𝑃, we
have 𝐴 ≤𝑝 𝐵

NP-Completeness: A problem B is NP-complete iff B is NP-hard
and 𝐵 ∈ 𝑁𝑃.

Motivations:

• If 𝑃 ≠ 𝑁𝑃, then every NP-Complete problems is not in P. So,
we shouldn’t try to design Polytime algorithms

• To show 𝑃 = 𝑁𝑃, it is enough to design a polynomial time
algorithm for just one NP-complete problem.

20

Cook-Levin Theorem

Theorem (Cook 71, Levin 73): 3-SAT is NP-complete, i.e., for all
problems 𝐴 ∈ 𝑁𝑃, 𝐴 ≤𝑝 3-SAT.

Pf (Draft. Take CSE 431 for more.):

Since 𝐴 ∈ 𝑁𝑃, there is a polytime certifier 𝐶 such that

𝑠 ∈ 𝐴 iff 𝐶 𝑠, 𝑡 = 1 for some 𝑡
To solve the problem 𝐴, it suffices to find 𝑡.
Since 𝐶 is polytime, we can

• convert 𝐶 to a poly size circuit (of AND OR NOT)

• Some input are the given 𝑠.
• Some input are 𝑡.
• Our goal is to find 𝑡 to make

the output is TRUE.

21

Cook-Levin Theorem

Theorem (Cook 71, Levin 73): 3-SAT is NP-complete, i.e., for all
problems 𝐴 ∈ 𝑁𝑃, 𝐴 ≤𝑝 3-SAT.

Pf (Draft. Take CSE 431 for more.):

To find an input such that output is true,

we convert the circuit to 3CNF 𝑥1 ∨ 𝑥2 ∨ 𝑥9 ∧ 𝑥2 ∨ 𝑥3 ∨ 𝑥7 ∧ ⋯

Example:

• An OR gate with input a,b and output c can be represented by
𝑎 ∨ 𝑏 ∨ 𝑐 ∧ (𝑎 ∨ 𝑐) ∧ (𝑏 ∨ 𝑐)

• A NOT gate with input a and output c can be represented by
𝑎 ∨ 𝑐 ∧ (𝑎 ∨ 𝑐)

Suppose the circuit gate 𝐶1, 𝐶2, ⋯ , 𝐶𝑞 with final output 𝑍

Then, the 3CNF is 𝐶1 ∧ 𝐶2 ∧ ⋯∧ 𝐶𝑞 ∧ 𝑍 where 𝐶𝑖 are the 3CNF
version of 𝐶𝑖.

22

Cook-Levin Theorem

Theorem (Cook 71, Levin 73): 3-SAT is NP-complete, i.e., for all
problems 𝐴 ∈ 𝑁𝑃, 𝐴 ≤𝑝 3-SAT.

• So, 3-SAT is the hardest problem in NP.

What does this say about other problems of interest? Like
Independent set, Vertex Cover, …

Fact: If 𝐴 ≤𝑝 𝐵 and 𝐵 ≤𝑝 𝐶 then, 𝐴 ≤𝑝 𝐶
Pf idea: Just compose the reductions from A to B and B to C

So, if we prove 3-SAT ≤𝑝 Independent set, then Independent
Set, Clique, Vertex cover, Set cover are all NP-complete

3-SAT ≤𝑝 Independent Set ≤𝑝 Vertex Cover ≤𝑝 Set Cover

23

3-SAT ≤𝑝 Independent Set

Map a 3-CNF to (G,k). Say m is number of clauses

• Create a vertex for each literal

• Joint two literals if

• They belong to the same clause (blue edges)

• The literals are negations, e.g., 𝑥𝑖 , ഥ𝑥𝑖 (red edges)

• Set k be the # of clauses.

𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥1 ∨ 𝑥3

24

𝑥1

𝑥3

𝑥4

𝑥2

𝑥3

𝑥4

𝑥2

𝑥1

𝑥3

Polynomial-Time Reduction

Correctness of 3-SAT ≤𝑝 Indep Set

F satisfiable => An independent of size k

Given a satisfying assignment, Choose one node from each clause
where the literal is satisfied

𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥1 ∨ 𝑥3

Satisfying assignment: 𝑥1 = 𝑇, 𝑥2 = 𝐹, 𝑥3 = 𝑇, 𝑥4 = 𝐹

• S has exactly one node per clause => No blue edges between S

• S follows a truth-assignment => No red edges between S

• S has one node per clause => |S|=k 25

𝑥1

𝑥3

𝑥4

𝑥2

𝑥3

𝑥4

𝑥2

𝑥1

𝑥3

Correctness of 3-SAT ≤𝑝 Indep Set

An independent set of size k => A satisfying assignment

Given an independent set S of size k.

S has exactly one vertex per clause (because of blue edges)

S does not have 𝑥𝑖 , ഥ𝑥𝑖 (because of red edges)

So, S gives a satisfying assignment

Satisfying assignment: 𝑥1 = 𝐹, 𝑥2 =? , 𝑥3 = 𝑇, 𝑥4 = 𝑇
𝑥1 ∨ 𝑥3 ∨ 𝑥4 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥1 ∨ 𝑥3

26

𝑥1

𝑥3

𝑥4

𝑥2

𝑥3

𝑥4

𝑥2

𝑥1

𝑥3

Summary
• If a problem is NP-hard it does not mean that all instances are

hared, e.g., Vertex-cover has a polynomial-time algorithm in
trees

• We learned the crucial idea of polynomial-time reduction. This
can be even used in algorithm design, e.g., we know how to
solve max-flow so we reduce image segmentation to max-flow

• NP-Complete problems are the hardest problem in NP

• NP-hard problems may not necessarily belong to NP.

• Polynomial-time reductions are transitive relations

27

