CSE 421

NP-Completeness

Yin Tat Lee

Computational Complexity

Goal: Classify problems according to the amount of
computational resources used by the best algorithms that
solve them

Here we focus on time complexity

Recall: worst-case running time of an algorithm
* max # steps algorithm takes on any input of size n

Relative Complexity of Problems

« Want a notion that allows us to compare the complexity
of problems

« Want to be able to make statements of the form

“If we could solve problem B in polynomial time
then we can solve problem A in polynomial time”

“Problem B is at least as hard as problem A”

Polynomial Time Reduction

Def A <, B: If there Is an algorithm for problem A using a
‘black box’ (subroutine) that solve problem B s.t.,

» Algorithm uses only a polynomial number of steps
« Makes only a polynomial number of calls to a subroutine for B

B is Polynomial Ais Polynomial
[time solvable] ‘ [time solvable]
Conversely,
No efficient - No efficient
[Algorithm forA] [Algorithm for B]

In words, B is as hard as A (it can be even harder)

So,

<3 Reductions

Here, we often use a restricted form of polynomial-time
reduction often called Karp reduction.

A S}Q B: if and only if there is an algorithm for A given a
black box solving B that on input x

* Runs for polynomial time computing an input f(x) of B

« Makes one call to the black box for B for input f(x)

« Returns the answer that the black box gave

We say that the function f(.) is the reduction

Let A = bipartite matching. Let B = maxflow.

Total Results: 0

Powered hv ‘h Pall Fvarvwhere

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

Answer

Let A = bipartite matching. Let B = maxflow.

We know how to solve bipartite matching by calling maxflow
once.

So, it may look like the answer is
Both A <, B and 4 <j, B.

However, since both problems can be solved in polynomial time,
one valid reduction would be simply doing nothing.

Hence, all statements are true. So, <, is mainly to distinguish if
a problem is in P or not.

Fine-Grained Complexity

There are recent work on distinguishing different polytime.

N2

N1(3/2-¢)
approximate
Diameter [23,56],

LCS [2,19], (3/2- _.e)- N2
Edit distance [14], 313131:0X11Tiat-e
Frechet di Radius [7] ...

Dynamic problems
e.g. SCC, Max Matching
[6,9,55,57]

Vast collection of problems |[N?2
in Computational Geometry
(starting with [34])
Sequence problems:
Jumbled indexing [12],
Local alignment [8]

\.\.’2
35UM ‘

713
NL.5

n3 N1
Problems in dense graphs:
Radius, Median,
Negative Triangle,
Replacement paths,
Betweenness centrality ...
4,63

Matching
Triangles

Triangle
Collection* | ;

Figure 1 Partial summary of the implications of the main conjectures. An arrow from problem A
to problem B, where A has a(n) next to it, B has b(n) next to it, implies that A <,; B. When the
inputs are graphs, n stands for the number of nodes. N always stands for the total input size. When
both n and N are present for a problem, we assume that N = n?; the meaning is that the reductions
are only for dense graphs in which case the input size is quadratic in n. For k-SAT, n denotes the
number of variables. For the dynamic problems, different key problems can be reduced to different
key problems, and the update/query time tradeoffs vary. References are not comprehensive.

Example 1: Indep Set <, Clique

Indep Set: Given G=(V,E) and an integer k, is there S € V s.t.
|S| = k and no two vertices in S are joined by an edge?

Clique: Given G=(V,E) and an integer k, isthere S €V, |[U| > k
s.t., every pair of vertices in S is joined by an edge?

Claim: Indep Set <, Clique

Pf. Given ¢ = (V, E) and instance of indep Set. Construct a new
graph ¢' = (V,E") where {u, v} € E' if and only if {u, v} ¢ E.

©
) 5
® @

S is an indep set “ Sis acligue
in G in G’

O
Example 2: Vertex Cover <,, Indep Set 4@/</Q
<IN

Vertex Cover: Given G=(V,E) and an integer kK, is there a vertex
cover of size at most k?

Claim: For any graph G = (V,E), S is an independent set iff
V — S Is a vertex cover

Pf. =>

Let S be an independent set of G

Then, S has at most one endpoint of every edge of G
So, V — § has at least one endpoint of every edge of G
So, V — S is a vertex cover.

<= Suppose V — S Is a vertex cover

Then, there is no edge between vertices of S (otherwise, V — S is
not a vertex cover)

So, S is an independent set.

10

Example 3: Vertex Cover <,, Set Cover

Set Cover: Given a set U, collection of subsets Sy, ..., S, of U and
an integer Kk, is there a collection of k sets that contain all
elements of U?

Claim: Vertex Cover <,, Set Cover
Pf:
Given (G = (V, E), k) of vertex cover we construct a set cover

iInput £(G, k)

e U=FE

 For each v € V we create a set S, of all edges connected to v
This clearly is a polynomial-time reduction

So, we need to prove it gives the right answer

11

Example 3: Vertex Cover <,, Set Cover

Claim: Vertex Cover <y Set Cover

Pf. Given (G = (V,E), k) of vertex cover we construct a set cover
iInput (G, k)

e U=E

« Foreach v € IV we create a set S, of all edges connected to v

Vertex-Cover (G,Kk) is yes => Set-Cover f(G,k) is yes

If a set W < V covers all edges, just choose S, forall v e W, it
covers all U.

Set-Cover f(G,k) is yes => Vertex-Cover (G,k) Is yes

If (Sy,,..., Sy,) covers all U, the set {v,, ..., vx } covers all edges
of G.

12

Decision Problems

A decision problem is a computational problem where the
answer Is just yes/no

Here, we study computational complexity of decision Problems.

Why?
« Simpler to deal with

 Decision version is not harder than Search version, so it gives
a lower bound for Decision version

« usually, you can use decider multiple times to find an answer.

13

Polynomial Time

Define P (polynomial-time) to be the set of all decision
problems solvable by algorithms whose worst-case running
time is bounded by some polynomial in the input size.

Do we understand P?

« We can prove that a problem is in P by exhibiting a
polynomial time algorithm

« Itis in most cases very hard to prove a problem is not in
P.

14

Beyond P?

We have seen many problems that seem hard
+ Independent Set The independent set S
o 3_C0|0ring The 3-Coloring

« Vertex Cover ‘ The vertex cover S \
e 3-SAT ‘ The T/F assignment \

Given a formula (x; VX3 Vxg) A (X3 VX3V x7) A+, IS there a
satisfying assignment?

Common Property: If the answer Is yes, there is a “short” proof
(a.k.a., certificate), that allows you to verify (in polynomial-time)
that the answer is yes.

* The proof may be hard to find

15

Decision Problems

A decision problem Is a computational problem where the
answer Is just yes/no.

We can define a problem by a set X < {0,1}".
The answer for the input s iIs YES iff s € X.

Certifier: Algorithm C(s, t) is a certifier for problem A if
s € X ifand only if (There is a t such that C(s,t) = YES))

NP: Set of all decision problems for which there exists a poly-
time certifier.

Co-NP: X € co — NP if and only if X € NP.

16

Example: 3SAT is in NP

Given a 3-CNF formula, is there a satisfying assignment?

(conjunctive normal form (CNF) is AND of ORS)

Certificate: An assignment of truth values to the n boolean
variables.

Verifier: Check that each clause has at least one true
literal.

EX:(xy VX3 VX)) AN(Xy VXL VX3) A (X VXLV X3)
Certificate: x;, =T,x, = F,x3 =T, x, = F

Conclusion: 3-SAT is In NP

17

Question: Is Maxflow is In NP?

Decision problem: Is the maximum flow value = k?

Answer 1:

Certificate: A flow f and a cut (S, S)
Verifier: Check if val(f) = cap(S, S)

Answer 2:

Certificate: None
Verifier: Any polynomial time maxflow algo.

18

What do we know about NP?

Nobody knows if all problems in NP can be done in
polynomial time, i.e. does P=NP?

« one of the most important open questions in all of science.
« Huge practical implications specially if answer is yes

Every problem in P is in NP

one doesn’t even need a certificate for problems in P so just
ignore any hint you are given

Every problem in NP is in exponential time

Some problems in NP seem really hard

* nobody knows how to prove that they are really hard to
solve, i.e. P # NP

19

NP Completeness

Complexity Theorists Approach: We don’t know how to prove
any problem in NP is hard. So, let’s find hardest problems in NP.

NP-hard: A problem B is NP-hard iff for any problem A € NP, we
have A <, B

NP-Completeness: A problem B is NP-complete iff B is NP-hard
and B € NP.

Motivations:

 If P #= NP, then every NP-Complete problems is not in P. So,
we shouldn’t try to design Polytime algorithms

« Toshow P = NP, itis enough to design a polynomial time
algorithm for just one NP-complete problem.

20

Cook-Levin Theorem

Theorem (Cook 71, Levin 73): 3-SAT is NP-complete, i.e., for all
problems A € NP, A <, 3-SAT.

Pf (Draft. Take CSE 431 for more.):
Since A € NP, there is a polytime certifier C such that

seAiff C(s,t) =1 forsomet

To solve the problem A, it suffices to find t.
Since C Is polytime, we can
convert C to a poly size circuit (of AND OR NOT)

Some input are the given s.
Some input are t. =

Our goal is to find t to make
the output is TRUE.

)Y

OR

>
—>—

\

AND

L1l

Cook-Levin Theorem

Theorem (Cook 71, Levin 73): 3-SAT is NP-complete, i.e., for all
problems A € NP, A <, 3-SAT.

Pf (Draft. Take CSE 431 for more.):
To find an input such that output is true,
we convert the circuit to 3CNF (x; VX, Vxg) A (G VX3 Vxs) A -

Example:
« An OR gate with input a,b and output ¢ can be represented by
(avbVvc)A(avc)A(bVc)
« A NOT gate with input a and output c can be represented by
(avc)A(aVo)

Suppose the circuit gate Cy, C,, -+, C, with final output Z

Then, the 3CNF is C; A C, A+ A C4 A Z where C; are the 3CNF
version of C;.

22

Cook-Levin Theorem

Theorem (Cook 71, Levin 73): 3-SAT is NP-complete, i.e., for all
problems A € NP, A <, 3-SAT.

« S50, 3-SAT is the hardest problem in NP.

What does this say about other problems of interest? Like
Independent set, Vertex Cover, ...

Fact: If A<, Band B <, Cthen, A <, C
Pf idea: Just compose the reductions from AtoBand Bto C

So, if we prove 3-SAT <, Independent set, then Independent
Set, Clique, Vertex cover, Set cover are all NP-complete

3-SAT <, Independent Set <, Vertex Cover <, Set Cover

23

3-SAT <, Independent Set

Map a 3-CNF to (G,k). Say m is number of clauses
« Create a vertex for each literal
« Joint two literals if
« They belong to the same clause (blue edges)
« The literals are negations, e.g., x;, x; (red edges)
« Set k be the # of clauses.

(X VI VX)) A (X VIV X)) A(x, V 37V X

(N

Polynomial-Time Reduction

24

Correctness of 3-SAT <, Indep Set

F satisfiable => An independent of size k
Given a satisfying assignment, Choose one node from each clause

where the literal is satisfied

(X VX3 VX)) AN(x, VXL VX3)A(X, VXLV X3)
1 3 4 2 4 3

Satisfying assignment: x;, =T,x, = F,x3 =T, x, = F

« S has exactly one node per clause => No blue edges between S
« S follows a truth-assignment => No red edges between S

« S has one node per clause => |S|=k

25

Correctness of 3-SAT <, Indep Set

An independent set of size k => A satisfying assignment
Given an independent set S of size k.

S has exactly one vertex per clause (because of blue edges)
S does not have x;, x; (because of red edges)

So, S gives a satisfying assignment

Satisfying assignment: x; = F,x, =?,x3 =T,x, =T
(xq V3 Vx4)/\(x2 Vx4Vx3)A(x2 VxX{Vx3)

26

Summary

If a problem is NP-hard it does not mean that all instances are
hared, e.g., Vertex-cover has a polynomial-time algorithm in
trees

We learned the crucial idea of polynomial-time reduction. This
can be even used in algorithm design, e.g., we know how to
solve max-flow so we reduce image segmentation to max-flow

NP-Complete problems are the hardest problem in NP
NP-hard problems may not necessarily belong to NP.

Polynomial-time reductions are transitive relations

NP-hard

NCY,
NP-complete

More of what we think the world looks like.

27

